Работа 2 строение атома вариант 1. Основы строения атома

Электроны

Понятие атом возникло еще в античном мире для обозначения частиц вещества. В переводе с греческого атом означает «неделимый».

Ирландский физик Стони на основании опытов пришел к выводу, что электричество переносится мельчайшими частицами, сущеетвующими в атомах всех химических элементов. В 1891 г. Стони предложил эти частицы назвать электронами, что по-гречески означает «янтарь». Через несколько лет после того, как электрон получил свое название, английский физик Джозеф Томсон и французский физик Жан Перрен доказали, что электроны несут на себе отрицательный заряд. Это наименьший отрицательный заряд, который в химии принят за единицу (-1). Томсон даже сумел определить скорость движения электрона (скорость электрона на орбите обратно пропорциональна номеру орбиты n. Радиусы орбит растут пропорционально квадрату номера орбиты. На первой орбите атома водорода (n=1; Z=1) скорость равна ≈ 2,2·106 м/с, то есть примерно в сотню раз меньше скорости света с=3·108 м/с.) и массу электрона (она почти в 2000 раз меньше массы атома водорода).

Состояние электронов в атоме

Под состоянием электрона в атоме понимают со­вокупность информации об энергии определенного электрона и пространстве, в котором он находится . Электрон в атоме не имеет траектории движения, т. е. можно говорить лишь о веро­ятности нахождения его в пространстве вокруг ядра .

Он может находиться в лю­бой части этого пространства, окружающего ядро, и совокупность его различных положений рассматривают как электронное облако с определенной плотностью отрицательного заряда. Образно это можно предста­вить себе так: если бы удалось через сотые или миллионные доли секунды сфотографиро­вать положение электрона в атоме, как при фотофинише, то электрон на таких фотогра­фиях был бы представлен в виде точек. При наложении бесчисленного множества та­ких фотографий получилась бы картина электронного облака с наибольшей плот­ностью там, где этих точек будет больше всего.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называ­ется орбиталью. В нем заключено приблизительно 90 % электронного облака , и это означает, что около 90 % времени электрон находится в этой части пространства. По форме различают 4 известных ныне типа орбиталей , которые обозначаются латинскими буквами s, p, d и f . Графическое изображение некоторых форм электронных орбиталей представлено на рисунке.

Важнейшей характеристикой движения электрона на определенной орбитали является энергия его связи с ядром . Электроны, обладающие близкими значениями энергии, образуют единый электронный слои, или энергетический уровень. Энергетические уровни нумеруют, начиная от ядра, - 1, 2, 3, 4, 5, 6 и 7.

Целое число n, обозначающее номер энергетического уровня, называют главным квантовым числом. Оно характеризует энергию электронов, занимающих данный энергетический уровень. Наименьшей энергией обладают электроны первого энергетического уровня, наиболее близкого к ядру. По сравнению с электронами первого уровня, электроны последующих уровней будут характеризоваться большим запасом энергии. Следовательно, наименее прочно связаны с ядром атома электроны внешнего уровня.

Наибольшее число электронов на энергетичес­ком уровне определяется по формуле:

N = 2n 2 ,

где N - максимальное число электронов; n - но­мер уровня, или главное квантовое число. Следовательно, на первом, ближайшем к ядру энергетическом уровне может находиться не бо­лее двух электронов; на втором - не более 8; на третьем - не более 18; на четвертом - не бо­лее 32.

Начиная со второго энергетического уровня (n = 2) каждый из уровней подразделяется на подуровни (подслои), несколько отличающиеся друг от друга энергией связи с ядром. Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один подуровень; второй - два; третий - три; четвертый - четыре подуровня . Подуровни в свою очередь образованы орбиталями. Каждому значению n соответствует число орбиталей, равное n.

Подуровни принято обозначать латинскими буквами, равно как и форму орбиталей, из которых они состоят: s, p, d, f.

Протоны и нейтроны

Атом любого химического элемента сравним с крохотной Солнечной системой. Поэтому такую модель атома, предложенную Э. Резерфордом, называют планетарной .

Атомное ядро, в котором сосредоточена вся масса атома, состоит из частиц двух видов - протонов и нейтронов .

Протоны имеют заряд, равный заряду электронов, но противоположный по знаку (+1), и массу, равную массе атома водорода (она принята в химии за единицу). Нейтроны не несут заряда, они нейтральны и имеют массу, равную массе протона.

Протоны и нейтроны вместе называют нуклонами (от лат. nucleus - ядро). Сумма числа протонов и нейтронов в атоме называется массовым числом . Например, массовое число атома алюминия:

13 + 14 = 27

число протонов 13, число нейтронов 14, массовое число 27

Так как массой электрона, ничтожно малой, можно пренебречь, то очевидно, что в ядре сосредоточена вся масса атома. Электроны обозначают e — .

Поскольку атом электронейтрален , то также очевидно, что число протонов и электронов в атоме одинаково. Оно равно порядковому номеру химического элемента, присвоенному ему в Периодической системе. Масса атома складывается из массы протонов и нейтронов. Зная порядковый номер элемента (Z), т. е. число протонов, и массовое число (А), равное сумме чисел протонов и нейтронов, можно найти число нейтронов (N) по формуле:

N = A — Z

Например, число нейтронов в атоме железа равно:

56 — 26 = 30

Изотопы

Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядра, но разное массовое число, называются изотопами . Химические элементы, встречающиеся в природе, являются смесью изотопов. Так, углерод имеет три изотопа с массой 12, 13, 14; кислород - три изотопа с массой 16, 17, 18 и т. д. Обычно приводимая в Периодической системе относительная атомная масса химического элемента является средним значением атомных масс природной смеси изотопов данного элемента с учетом их относительного содержания в природе. Химические свойства изотопов большинства химических элементов совершенно одинаковы. Однако изотопы водорода сильно различаются по свойствам из-за резкого кратного увеличения их относительной атомной массы; им даже присвоены индивидуальные названия и химические знаки.

Элементы первого периода

Схема электронного строения атома водорода:

Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).

Графическая электронная формула атома во­дорода (показывает распределение электронов по энергетическим уровням и подуровням):

Графические электронные формулы атомов показывают распределение электронов не только по уровням и подуровням, но и по орбиталям.

В атоме гелия первый электронный слой завершен - в нем 2 электрона. Водород и гелий - s-элементы; у этих атомов заполняется электронами s-орбиталь.

У всех элементов второго периода первый электронный слой заполнен , и электроны заполняют s- и р-орбитали второго электронного слоя в соот­ветствии с принципом наименьшей энергии (снача­ла s, а затем р) и правилами Паули и Хунда.

В атоме неона второй электронный слой завершен - в нем 8 электронов.

У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать 3s-, 3р- и 3d- подуровни.

У атома магния достраивается 3s- электронная орбиталь. Na и Mg - s-элементы.

У алюминия и последующих элементов запол­няется электронами 3р-подуровень.

У элементов третьего периода остаются неза­полненными 3d-орбитали.

Все элементы от Al до Ar - р-элементы. s- и р-элементы образуют главные подгруппы в Пе­риодической системе.

Элементы четвертого — седьмого периодов

У атомов калия и кальция появляется четвертый электронный слой, заполняется 4s-подуровень, т. к. он имеет меньшую энергию, чем 3d-подуровень.

К, Са - s-элементы, входящие в главные под­группы. У атомов от Sc до Zn заполняется электро­нами 3d-подуровень. Это 3d-элементы. Они входят в побочные подгруппы, у них заполняется пред­внешний электронный слой, их относят к переход­ным элементам.

Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с 4s- на 3d-подуровень, что объясняется большей энергетической устойчи­востью образующихся при этом электронных кон­фигураций 3d 5 и 3d 10:

В атоме цинка третий электронный слой завер­шен - в нем заполнены все подуровни 3s, 3р и 3d, всего на них 18 электронов. У следующих за цин­ком элементов продолжает заполняться четвертый электронный слой, 4р-подуровень.

Элементы от Ga до Кr - р-элементы.

У атома криптона внешний слой (четвертый) завершен, имеет 8 электронов. Но всего в четвертом электронном слое может быть 32 электрона; у атома криптона пока остаются незаполненными 4d- и 4f-подуровни.У элементов пятого периода идет заполнение по-дуровней в следующем порядке: 5s — 4d — 5р. И так-же встречаются исключения, связанные с «провалом » электронов, у 41 Nb, 42 Мо, 44 Ru, 45 Rh, 46 Pd, 47 Ag.

В шестом и седьмом периодах появляются f-элементы, т. е. элементы, у которых идет заполнение соответственно 4f- и 5f-подуровней третьего снаружи электронного слоя.

4f-элементы называют лантаноидами.

5f-элементы называют актиноидами.

Порядок заполнения электронных подуровней в атомах элементов шестого периода: 55 Cs и 56 Ва - 6s-элементы; 57 La … 6s 2 5d x - 5d-элемент; 58 Се - 71 Lu - 4f-элементы; 72 Hf — 80 Hg - 5d-элементы; 81 Т1 — 86 Rn - 6d-элементы. Но и здесь встречаются элементы, у которых «нарушается» порядок заполне­ния электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных f-подуровней, т. е. nf 7 и nf 14 . В зависимости от того, какой подуровень атома заполняется электронами последним, все элемен­ты делят на четыре электронных семейства, или блока:

  • s-элементы . Электронами заполняется s-под­уровень внешнего уровня атома; к s-элементам относятся водород, гелий и элементы главных подгрупп I и II групп.
  • p-элементы . Электронами заполняется р-подуровень внешнего уровня атома; к р-элементам относятся элементы главных подгрупп III- VIII групп.
  • d-элементы . Электронами заполняется d-под­уровень предвнешнего уровня атома; к d-эле­ментам относятся элементы побочных подгрупп I-VIII групп, т. е. элементы вставных декад больших периодов, расположенных между s- и р-элементами. Их также называют переход­ными элементами.
  • f-элементы . Электронами заполняется f-подуро­вень третьего снаружи уровня атома; к ним от­носятся лантаноиды и антиноиды.

Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского - «веретено»), т. е. обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемый оси: по часовой или против часовой стрелки.

Этот принцип носит название принципа Паули . Если на орбитали находится один электрон, то он называется неспаренным, если два, то это спаренные электроны, т. е. электроны с противоположными спинами. На рисунке показана схема подразделения энергетических уровней на подуровни и очередность их заполнения.


Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек - записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули и правило Ф. Хунда , согласно которому электроны занимают свободные ячейки сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины, при этом по принципу Паули будут уже противоположно направленными.

Правило Хунда и принцип Паули

Правило Хунда - правило квантовой химии, определяющее порядок заполнения орбиталей определённого подслоя и формулируется следующим образом: суммарное значение спинового квантового числа электронов данного подслоя должно быть максимальным. Сформулировано Фридрихом Хундом в 1925 году.

Это означает, что в каждой из орбиталей подслоя заполняется сначала один электрон, а только после исчерпания незаполненных орбиталей на эту орбиталь добавляется второй электрон. При этом на одной орбитали находятся два электрона с полуцелыми спинами противоположного знака, которые спариваются (образуют двухэлектронное облако) и, в результате, суммарный спин орбитали становится равным нулю.

Другая формулировка : Ниже по энергии лежит тот атомный терм, для которого выполняются два условия.

  1. Мультиплетность максимальна
  2. При совпадении мультиплетностей суммарный орбитальный момент L максимален.

Разберём это правило на примере заполнения орбиталей p-подуровня p -элементов второго периода (то есть от бора до неона (в приведённой ниже схеме горизонтальными чёрточками обозначены орбитали, вертикальными стрелками - электроны, причём направление стрелки обозначает ориентацию спина).

Правило Клечковского

Правило Клечковского — по мере увеличения суммарного числа электронов в атомах (при возрастании зарядов их ядер, или порядковых номеров химических элементов) атомные орбитали заселяются таким образом, что появление электронов на орбитали с более высокой энергией зависит только от главного квантового числа n и не зависит от всех остальных квантовых чисел, в том числе и от l. Физически это означает, что в водородоподобном атоме (в отсутствие межэлектронного отталкивания) орбитальная энергия электрона определяется только пространственной удаленностью зарядовой плотности электрона от ядра и не зависит от особенностей его движения в поле ядра.

Эмпирическое правило Клечковского и вытекающее из него схема очерёдностей несколько противоречатреальной энергетической последовательности атомых орбиталей только в двух однотипных случаях: у атомов Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au имеет место “провал” электрона с s-подуровня внешнего слояна d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома, аименно: после заполнения двумя электронами орбитали 6s

КОНТРОЛЬНАЯ РАБОТА №1 Тема «Строение атома» 11 класс

Вариант 1

1.Номер периода в Периодической системе определяется:

А. Зарядом ядра атома

Б. Числом электронов в наружном слое атома.

В. Числом электронных слоев в атоме

Г. Числом электронов в атоме.

А. S и Cl Б.Be и B В. Kr и Xe Г. Mo и Se

3. р – Элементом является:

А. Скандий.

Б. Барий.

В. Мышьяк

Г. Гелий

10 4s 2 соответствует элементу:

А. Кальцию.

Б. Криптону.

В.Кадмию.

Г. Цинку.

A. Zn(OH) 2

Б. Mg(OH) 2

В. Ca(OH) 2

Г. Cr(OH) 2

А.Mg – Ca – Zn.

Б.Al – Mg – Ca.

В.Sr – Rb – K.

Г.Ge - Si – Sb.

2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 1

А.Э 2 О

Б.Э 2 О 3

В.ЭО 2

Г.ЭО 3

8. Изотоп кальция, в ядре которого содержится 22 нейтрона, обозначают:

А. 20 40 Са

Б. 20 42 СаВ. 20 44 Са

Г. 20 48 Са

9. Установите соответствие:

Элемент:

  1. Алюминий. II. Калий. III. Селен. IV. Магний.

Электронная формула:

А.1s 2 2s 2 2p 6 3s 2 3p 1

Б.1s 2 2s 2 2p 6 3s 2

В.1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 4

Г.1s 2 2s 2 3s 2 3p 6 4s 1

Формула высшего оксида:

  1. Э 2 О 2.Э 2 О 3 3.ЭО 4.ЭО 3

Формула высшего гидроксида:

а. ЭОН. б. Э(ОН) 2 . в. Э(ОН) 3 г. Н 2 ЭО 4

10. На основании положения в Периодической системе расположите элементы: германий, мышьяк, сера, фосфор – в порядке убывания окислительных свойств. Объясните ответ.

11. Как и почему в Периодической системе изменяются металлические свойства?

А. В пределах периода.

Б. В пределах главной подгруппы.

12. Составьте электронную формулу элемента с порядковым номером 30 в Периодической системе. Сделайте вывод о принадлежности этого элемента к металлам или неметаллам. Запишите формулы его высшего оксида и гидроксида, укажите их характер.

13. Какие химические свойства характерны для высшего оксида элемента 3-го периода, главной подгруппы VI группы Периодической системы? Ответ подтвердите, написав уравнения реакций.

Контрольная работа №1 Тема «Строение атома» 11 класс

Вариант 2

  1. Номер группы (для элементов главных подгрупп) в Периодической системе определяет:

А.Число протонов в атоме.

Б.Число электронов в наружном слое атома.

В.Число электронных слоев в атоме.

Г.Число нейтронов в атоме.

2. Пара элементов, имеющих сходное строение внешнего и предвнешнего энергетических уровней:

А.Ba и K В.Ti и Ge

Б.Sb и Bi Г.Kr и Fe

3. р – Элементом является:

А.Калий

Б. Кремний

В.Аргон

Г.Медь

4. Электронная конфигурация. . .3d 5 4s 2 соответствует элементу:

А. Брому

Б. Кальцию

В. Марганцу

Г. Хлору

5. Амфотерным оксидом является вещество, формула которого:

А. CrO Б.Сr 2 О 3 В. СrО 3 Г.FeO

6. Ряд элементов, расположенных в порядке усиления металлических свойств:

А. Al – Ga – Ge.

Б. Ca – Sr –Ba.

В. K –Na –Li.

Г. Mg - Ca – Zn.

7.Элемент Э с электронной формулой 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 образуется высший оксид, соответствующий формуле:

А.ЭО

Б.Э 2 О 3

В.Э 2 О 5

Г.ЭО 3

8. Изотоп железа, в ядре которого содержится 30 нейтронов, обозначают:

А. 26 54 Fe

Б. 26 56 Fe

В. 26 57 Fe

Г. 26 58 Fe

9. Установите соответствие:

Элемент:

  1. Бор. II. Бром. III. Фосфор. IV. Литий.

Электронная формула:

А.1s 2 2s 2 2p 1

Б.1s 2 2s 1

В. 1s 2 2s 2 2p 6 3s 2 3p 3

Г. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5

Формула высшего оксида:

  1. Э 2 О 2.Э 2 О 3 3.Э 2 О 5 4.Э 2 О 7

Формула высшего гидроксида:

а. ЭОН. б. НЭО 3 . в. Н 3 ЭО 3 г. НЭО 4

ЧАСТЬ Б. Задания со свободным ответом

10. На основании положения в Периодической системе расположите элементы: алюминий, калий, кальций, магний – в порядке возрастания восстановительных свойств. Объясните ответ.

11. Почему заряды ядер атомов элементов, расположенных в порядке возрастания порядковых номеров в Периодической системе, изменяются монотонно, а свойства элементов - периодически?

12. Составьте электронную формулу элемента с порядковым номером 38 в Периодической системе. Сделайте вывод о принадлежности этого элемента к металлам или неметаллам. Запишите формулы его высшего оксида и гидроксида, укажите их характер.

13. Какие химические свойства характерны для гидроксидов металлов? Ответ подтвердите, написав уравнения реакций.

Вариант 3

1.Общее число электронов в атоме элемента определяют, используя Периодическую систему, по номеру:

А. Группы.

Б. Периода.

В. Ряда.

Г. Порядковому.

2. Пара элементов, имеющих сходное строение внешнего и предвнешнего энергетических уровней:

А. Sn и Si Б.As и Se В. Zn и Ca Г. Mo и Te

3. f – Элементом является:

А. Германий.

Б. Калий.

В. Селен.

Г. Уран.

4. Электронная конфигурация. . .4s 2 4p 6 соответствует элементу:

А. Брому.

Б. Железу.

В.Неону.

Г. Криптону.

5. Амфотерным гидроксидом является вещество, формула которого:

A. Ga(OH) 3.

Б. Mg(OH) 2.

В. LiOH.

Г. Sc(OH) 2

6. Ряд элементов, расположенных в порядке усиления металлических свойств:

А. K – Rb – Sr.

Б.Al – Mg – Ca.

В. Be –– Li - Cs.

Г.Ge - Sn – Sb.

7.Элемент Э с электронной формулой 1s 2 2s 2 2p 6 3s 1 образуется высший оксид, соответствующий формуле:

А.Э 2 О

Б.Э 2 О 3

В.ЭО 2

Г.ЭО 3

8. Изотоп кальция, в ядре которого содержится 24 нейтрона, обозначают:

А. 20 40 Са

Б. 20 42 Са

В. 20 44 Са

Г. 20 48 Са

9. Установите соответствие:

Элемент:

  1. Азот. II. Кальций. III. Кремний. IV. Сера.

Электронная формула:

А.1s 2 2s 2 2p 3

Б.1s 2 2s 2 2p 6 3s 2 3p 4

В.1s 2 2s 2 2p 6 3s 2 3p 2

Г.1s 2 2s 2 3s 2 3p 6 4s 2

Формула высшего оксида:

  1. ЭО 2.ЭО 2 3.Э 2 О 5 4.ЭО 3

Формула высшего гидроксида:

а. Н 2 ОЭ 4 . б. Э(ОН) 2 . в. Н 2 ЭО 3 г. НЭО 3

ЧАСТЬ Б. Задания со свободным ответом

10. На основании положения в Периодической системе расположите элементы: кислород, мышьяк, сера, фосфор – в порядке убывания окислительных свойств. Объясните ответ.

11. Перечислите основные правила(законы), в соответствии с которыми происходит заполнение электронами уровней, подуровней и орбиталей в электронной оболочке атомов элементов.

12. Составьте электронную формулу элемента с порядковым номером 34 в Периодической системе. Сделайте вывод о принадлежности этого элемента к металлам или неметаллам. Запишите формулы его высшего оксида и гидроксида, укажите их характер.

13. Какие химические свойства характерны для гидроксидов неметаллов? Ответ подтвердите, написав уравнения реакций.


Контрольная работа №1.

Вариант 1.

1. Укажите число полностью заполненных

а) энергетических уровней

б) энергетических подуровней

для атомов элементов №32 и №37.

2. Катион Э3+ некоторого элемента имеет электронную конфигурацию 1s22s22p6. Cколько протонов и нейтронов содержится в ядре атома данного элемента?

3. Определите число электронов и число протонов в ионах NO2-, Н3О+.

4. Напишите электронную конфигурацию частиц: As3-, Rb+. Приведите примеры других частиц с такой же электронной конфигурацией (по 2 примера).

…4s23d3? Ответ оформите в виде таблицы.

6. Дайте характеристику элементу № 33 по плану:

Вариант 2.

1. 1. Укажите число полностью заполненных

а) энергетических уровней

б) энергетических подуровней

для атомов элементов № 25 и №35.

2. Анион Э3- некоторого элемента имеет электронную конфигурацию 1s22s22p63s23p6. Cколько протонов и нейтронов содержится в ядре атома данного элемента?

3. Определите число электронов и число протонов в ионах NH4+, SO32-.

4. Напишите электронную конфигурацию частиц: Se2-, Ga3+. Приведите примеры других частиц с такой же электронной конфигурацией (по 2 примера).

5. Какие значения могут принимать квантовые числа для электронов

…3s23р4? Ответ оформите в виде таблицы.

6. Дайте характеристику элементу № 38 по плану:

1) положение в периодической таблице

2) строение атома (частицы в составе ядра, электронная конфигурация, распределение электронов по уровням, графическое изображение наружного уровня)

3) металл или неметалл (с объяснением)

4) сравнение с соседними элементами по периоду и подгруппе

5) формула высшего оксида и его характер (с уравнениями реакций)

6) формула гидроксида и его характер (с уравнениями реакций)

7) формула летучего водородного соединения для неметалла.

Контрольная работа №1 по теме «Строение атома»

Вариант 1.

1. Укажите число полностью заполненных

а) энергетических уровней

б) энергетических подуровней

для атомов элементов №32 и №37.

2. Катион Э 3+ s 2 2 s 2 2 p 6 . C

NO 2 - , Н 3 О + .

As 3- , Rb +

Li 3 N, H 2 Se, PCl 3 , SiO 2 .

а ) SiO 2 → P 2 O 5 → SO 3

б ) NH 3 → PH 3 → AsH 3

в) Al → Mg → Na

г) BaO → SrO → CaO?

Вариант 2.

1. 1. Укажите число полностью заполненных

а) энергетических уровней

б) энергетических подуровней

для атомов элементов № 25 и №35.

2. Анион Э 3- некоторого элемента имеет электронную конфигурацию 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 . C колько протонов и нейтронов содержится в ядре атома данного элемента?

3. Определите число электронов и число протонов в ионах NH 4 + , SO 3 2- .

4. Напишите электронную конфигурацию частиц: Se 2- , Ga 3+ . Приведите примеры других частиц с такой же электронной конфигурацией (по 2 примера).

5. Укажите вид химической связи и покажите механизм её образования:

SiCl 4 , H 2 O 2 , CO 2 , Mg 3 P 2 .

6. Как изменяются свойства в ряду:

а) Al 2 O 3 → MgO → Na 2 O

б) HF → HCl → HBr

в ) Se → S → O

г ) N 2 O 5 → P 2 O 5 → As 2 O 5 ?

Строение атома

При химических реакциях ядра атомов остаются без изменений, изменяется лишь строение электронных оболочек вследствие перераспределения электронов между атомами. Способностью атомов отдавать или присоединять электроны определяются его химические свойства.

Электрон имеет двойственную (корпускулярно-волновую) природу. Благодаря волновым свойствам электроны в атоме могут иметь только строго определенные значения энергии, которые зависят от расстояния до ядра. Электроны, обладающие близкими значениями энергии образуют энергетический уровень. Он содержит строго определенное число электронов - максимально 2n 2 . Энергетические уровни подразделяются на s-, p-, d- и f- подуровни; их число равно номеру уровня.

Квантовые числа электронов.

Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел: главного (n), орбитального (l), магнитного (m) и спинового (s). Первые три характеризуют движение электрона в пространстве, а четвертое - вокруг собственной оси.

Главное квантовое число (n). Определяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3 ...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является внешним.

Пример.

Элемент кадмий Cd расположен в пятом периоде, значит n = 5. В его атоме электроны раcпределены по пяти энергетическим уровням (n = 1, n = 2, n = 3, n = 4, n = 5); внешним будет пятый уровень (n = 5). Орбитальное квантовое число (l) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и l - подуровнем.

l=0 s- подуровень, s- орбиталь - орбиталь сфера

l=1 p- подуровень, p- орбиталь - орбиталь гантель

l=2 d- подуровень, d- орбиталь - орбиталь сложной формы

f-подуровень, f-орбиталь - орбиталь еще более сложной формы

S - орбиталь

Три p - орбитали

Пять d - орбиталей

На первом энергетическом уровне (n = 1) орбитальное квантовое число l принимает единственное значение l = (n - 1) = 0. Форма обитали - сферическая; на первом энергетическом только один подуровень - 1s. Для второго энергетического уровня (n = 2) орбитальное квантовое число может принимать два значения: l = 0, s- орбиталь - сфера большего размера, чем на первом энергетическом уровне; l = 1, p- орбиталь - гантель. Таким образом, на втором энергетическом уровне имеются два подуровня - 2s и 2p. Для третьего энергетического уровня (n = 3) орбитальное квантовое число l принимает три значения: l = 0, s- орбиталь - сфера большего размера, чем на втором энергетическом уровне; l = 1, p- орбиталь - гантель большего размера, чем на втором энергетическом уровне; l = 2, d- орбиталь сложной формы.

Таким образом, на третьем энергетическом уровне могут быть три энергетических подуровня - 3s, 3p и 3d.

Магнитное квантовое число (m) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -I до +I, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве.

Для s- орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве.

Для p- орбитали (l = 1) - три равноценные ориентации в пространстве (2l + 1 = 3): m = -1, 0, +1.

Для d- орбитали (l = 2) - пять равноценных ориентаций в пространстве (2l + 1 = 5): m = -2, -1, 0, +1, +2.

Таким образом, на s- подуровне - одна, на p- подуровне - три, на d- подуровне - пять, на f- подуровне - 7 орбиталей.

Спиновое квантовое число (s) характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и -1/2 соответствующие противоположным направлениям вращения.

Принципы заполнения орбиталей.

1. Принцип Паули. В атоме не может быть двух электронов, у которых значения всех квантовых чисел (n, l, m, s) были бы одинаковы, т.е. на каждой орбитали может находиться не более двух электронов (c противоположными спинами).

2. Правило Клечковского (принцип наименьшей энергии). В основном состоянии каждый электрон располагается так, чтобы его энергия была минимальной. Чем меньше сумма (n + l), тем меньше энергия орбитали. При заданном значении (n + l) наименьшую энергию имеет орбиталь с меньшим n. Энергия орбиталей возрастает в ряду:

1S < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d " 4f < 6p < 7s.

3. Правило Хунда. Атом в основном состоянии должен иметь максимально возможное число неспаренных электронов в пределах определенного подуровня.

Полная электронная формула элемента.

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимальной энергии. Это значит, что сначала заполняются подуровни, для которых:

1) Главное квантовое число n минимально;

2) Внутри уровня сначала заполняется s- подуровень, затем p- и лишь затем d- (l минимально);

3) Заполнение происходит так, чтобы (n + l) было минимально (правило Клечковского);

4) В пределах одного подуровня электроны располагаются таким образом, чтобы их суммарный спин был максимален, т.е. содержал наибольшее число неспаренных электронов (правило Хунда).

5) При заполнении электронных атомных орбиталей выполняется принцип Паули. Его следствием является, что энергетическому уровню с номером n может принадлежать не более чем 2n 2 электронов, расположенных на n 2 подуровнях.

Пример.

Цезий (Сs) находится в 6 периоде, его 55 электронов (порядковый номер 55) распределены по 6 энергетическим уровням и их подуровням. Cоблюдая последовательность заполнения электронами орбиталей получим:

>55 >Cs 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 4p 6 4d 10 5s 2 5p 6 5d 10 6s 1

Список литературы

Для подготовки данной применялись материалы сети Интернет из общего доступа



Вариант 1

Часть А.

А 1. Ядро атома (39 К) образовано

1) 19 протонами и 20 электронами 2) 20 нейтронами и 19 электронами

3) 19 протонами и 20 нейтронами 4) 19 протонами и 19 нейтронами

А 2 . Атому элемента фосфор отвечает электронная формула

1) 1S 2 2S 2 2p 6 3S 2 3p 2 2) 1S 2 2S 2 2p 6 3S 2 3p 3 3) 1S 2 2S 2 2p 6 3S 2 3p 4 4) 1S 2 2S 2 2p 6 3S 2 3p 5

А 3. Химические элементы расположены в порядке уменьшения их атомных радиусов

1) Ва, Cd, Sb 2) In,Pb,Sb 3) Cs,Na, H 4) Br, Se, As

А 4. Верны ли следующие суждения о химических элементах?

А. Все химические элементы-металлы относятся к S- и d- элементам.

Б. Неметаллы в соединениях проявляют только отрицательную степень окисления.

А 5. Среди металлов главной подгруппы II группы наиболее сильным восстановителем является

1) барий 2) кальций 3) стронций 4) магний

А 6. Число энергетических слоев и число электронов во внешнем энергетическом слое атома хрома равны соответственно

А 7. Высший гидроксид хрома проявляет

А 8. Электроотрицательность элементов возрастает слева направо по ряду

1) O-S-Se-Te 2) B-Be-Li-Na 3) O-N-P-As 4) Ge-Si-S-Cl

А 9. Степень окисления хлора в Ba(ClO 3) 2 равна

1) +1 2) +3 3) +5 4) +7

А 10. Элемент мышьяк относится к

Ответами к заданию В1-В2

В 1. Возрастание кислотных свойств высших оксидов происходит в рядах:

1) CaOSiO 2 SO 3 2) CO 2 Al 2 O 3 MgO 3) Li 2 OCO 2 N 2 O 5

4) As 2 O 5 P 2 O 5 N 2 O 5 5) BeOCaOSrO 6) SO 3 P 2 O 5 Al 2 O 3

В 2 . Установите соответствие.

Состав ядра Электронная формула

А. 7 р + 1 , 7 n 0 1 1. 2S 2 2p 3

Б. 15 р + 1 , 16 n 0 1 2. 2S 2 2p 4

В. 9 р + 1 , 10 n 0 1 3. 3S 2 3p 5

Г. 34 р + 1 , 45 n 0 1 4. 2S 2 2p 5

С 1. Составьте формулу высшего оксида и высшего гидроксида брома. Запишите электронную конфигурацию атома брома в основном и возбужденном состоянии, определите его возможные валентности.

Составьте электронные формулы атома брома в максимальной и минимальной степенях.

Контрольная работа № 1 по теме «Строение атома»

Вариант 2

Часть А. Выберите один правильный ответ

А 1. Число протонов, нейтронов и электронов изотопа 90 Sr соответсвенно равно

1. 38, 90, 38 2. 38, 52, 38 3. 90, 52, 38 4. 38, 52,90

А 2 . Электронная формула 1S 2 2S 2 2p 6 3S 2 3p 6 4S 1 отвечает атому элемента

1. сера 2. бром 3.калий 4. марганец

А 3. В порядке уменьшения атомного радиуса расположены элементы

1) бор, алюминий, галлий 3) бор, углерод, кремний

2) калий, натрий, литий 4) криптон, ксенон, радон

А 4. Верны ли следующие суждения об изменении свойств элементов в ряду

Be-Mg-Ca-Sr-Ba?

А. Металлические свойства усиливаются.

Б. Радиус атомов и число валентных электронов не изменяется.

1) верно только А 2) верно только Б 3) верны оба суждения 4) оба суждения неверны

А 5. Среди неметаллов третьего периода наиболее сильным окислителем является

1) фосфор 2) кремний 3) сера 4) хлор

А 6. Число энергетических слоев и число электронов во внешнем энергетическом слое атома марганца равны соответственно

1) 4, 2 2) 4, 1 3) 4, 6 4) 4, 5

А 7. Высший гидроксид марганца проявляет

1) кислотные свойства 3) основные свойства

2) амфотерные свойства 4) не проявляет кислотно-основных свойств

А 8. Электроотрицательность элементов уменьшается слева направо по ряду

1) O-Sе-S-Te 2) Bе-Bе-Li-Н 3) O-N-P-As 4) Ge-Si-S-Cl

А 9. Степень окисления азота в Ba(NO 2) 2 равна

1) +1 2) +3 3) +5 4) +7

А 10. Элемент марганец относится к

1) s-элементам 2) р-элементам 3) d-элементам 4) переходным элементам

Ответами к заданию В1-В2 является последовательность цифр, которая соответствует номерам правильных ответов.

В 1. Возрастание основных свойств высших гидроксидов происходит в рядах образующих их элементов:

1) MgAl ) AsР 3) PSCl

4)BBeLi 5) MgCaBa 6)CaKCs

В 2 . Установите соответствие.

Состав ядра Электронная формула

А. 19 р + 1 , 20 n 0 1 1. 4S 1

Б. 20 р + 1 , 20 n 0 1 2. 4S 2

В. 14 р + 1 , 14 n 0 1 3. 5S 1

Г. 35 р + 1 , 45 n 0 1 4. 4S 2 4p 5

При выполнении задания С 1 подробно запишите ход его решения и полученный результат.

С 1. Составьте формулу высшего оксида и высшего гидроксида мышьяка. Запишите электронную конфигурацию атома мышьяка в основном и возбужденном состоянии, определите его возможные валентности.

Составьте электронные формулы атома мышьяка в максимальной и минимальной степенях.

Похожие статьи