Основные понятия о работе электрических двигателей. Электрический двигатель — принцип работы электродвигателя

Электродвигатель - это двигатель, служащий для преобразования электрической энергии в механическую.

Основная часть электродвигателя - это контур (рамка, катушка) с током, расположенный в сильном магнитном поле (рис. 1). На контур в магнитном поле действует вращающий момент, в результате чего контур поворачивается и останавливается в положении равновесия, т.е. в положении, в котором его магнитный момент направлен параллельно магнитной индукции (плоскость контура перпендикулярна линиям индукции магнитного поля).

Если при прохождении контура через положение равновесия направление тока изменится на противоположное, то изменится и направление магнитного момента. Пройдя по инерции положение равновесия, контур сделает еще пол-оборота. Если периодически изменять направление тока, то контур придет во вращательное движение. Изменение направления тока осуществляется автоматически с помощью устройства, которое называется коллектором. Коллектор состоит из двух металлических полуцилиндров, к которым присоединены концы контура. Через них и скользящие контакты (щетки) контур присоединяют к источнику тока.

Наибольший момент действует на контур, плоскость которого параллельна магнитной индукции . Следовательно, если расположить два контура перпендикулярно друг к другу и вывести их концы на четверть-кольцевой коллектор (рис. 2), то вращающий момент резко возрастет и увеличится плавность хода подвижной части двигателя (ротора).

В промышленных двигателях магнитное поле создается обмоткой электромагнита; в роторе делают пазы, в которые укладывают много витков одной секции (вместо рамки); различные секции уложены под углом друг к другу, и их концы выведены на противоположные бока коллектора, к которому прижимаются щетки, соединенные с источником тока. От источника тока напряжение подается в электромагниты статора (неподвижной части двигателя). По каждой секции идет ток только тогда, когда ее пластины касаются щеток, т.е. когда плоскость этой секции параллельна вектору магнитной индукции. При этом секции поочередно создают самый большой вращающий момент.

Магнит или электромагнит, который создает магнитное поле, называют часто индуктором, а рамку (обмотку), через которую пропускают электрический ток, - якорем.

Основной рабочей характеристикой электродвигателя является вращающий момент М, создаваемый на валу двигателя силой Ампера, действующей на обмотки якоря:

где I - сила тока в обмотке, В - индукция магнитного поля, l - длина проводника, r - радиус ротора, N - число витков в обмотке.

Такие двигатели постоянного тока используют на транспорте (в электровозах, трамваях, троллейбусах), на подъемных кранах, во многих бытовых электрических устройствах (электробритвы, магнитофоны и др.).

С помощью электродвигателя постоянного тока - стартера - осуществляется запуск двигателя автомобиля.

Электродвигателем называется устройство, принцип действия которого преобразование электрической энергии в механическую. Такое преобразование используется для запуска в работу всевозможных видов техники, начиная от самого простого рабочего оборудования и заканчивая автомобилями. Однако при всей полезности и продуктивности такого преобразования энергий, в данном свойстве есть небольшой побочный эффект, который проявляется в повышенном выделении тепла. Именно поэтому электрические двигатели оснащаются дополнительным оборудованием, которое способно охладить его и позволить работать в бесперебойном режиме.


Принцип работы электродвигателя - основные функциональные элементы

Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором. Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой. Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как .

Принцип действия электродвигателя основана на выполнении следующих этапов работы. Во время включения в сеть, в статоре начинает осуществлять вращение возникшее поле магнитного типа. Оно действует на обмотку статора, в которой при этом возникает ток индукционного типа. Согласно закону Ампера, ток начинает действовать на ротор, который под этим действием начинает свое вращение. Непосредственно частота вращения ротора напрямую зависит от того, какой силы действия возникает ток, а так же от того, какое количество полюсов при этом возникает.


Принцип работы электродвигателя - разновидности и типы

На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.

Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.

Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.

Благодаря своим уникальным характеристикам и принципам действия электродвигатели на сегодняшний день распространенны гораздо больше, чем скажем двигатели внутреннего сгорания, поскольку они обладают рядом преимуществ перед ними. Так коэффициент полезного действия электродвигателей является очень высоким, и может достигать почти 98%. Так же электродвигатели отличаются высоким качеством и очень долгим рабочим ресурсом, они не издают много шума, и во время работы практически не вибрируют. Большим преимуществом такого типа двигателей является то, что они не нуждаются в топливе, и как результат не выделяют в атмосферу никаких загрязняющих веществ. К тому их использование является намного более экономичным, по сравнению с двигателями внутреннего сгорания.

Представьте себе, каким бы стал современный мир, если бы из него вдруг исчезли все электродвигатели. Допустим, заменили бы их на тепловые машины. Но ведь тепловые двигатели громоздки, выделяют пар и выхлопные газы, в то время как электрические двигатели сопоставимой мощности компактны, отлично умещаются на станках, электротранспорте, другом оборудовании, будучи при этом экологически безопасными, экономичными и надежными. Невозможно представить современный мир без электродвигателей, сильно облегчающих работу людям, короче говоря, делающих нашу жизнь более комфортной.

Благодаря электродвигателям мы получаем механическую энергию из электрической. А решающее значение в этом процессе имеют массогабаритные характеристики, мощность и количество оборотов в минуту, которые в свою очередь связаны как с конструктивными особенностями двигателей, так и с параметрами питающего напряжения.

По виду питающего напряжения электродвигатели бывают: переменного или постоянного тока. По способу управления: шаговыми, линейными, серво (следящими). Двигатели переменного тока, в свою очередь, бывают асинхронными и синхронными. Давайте же рассмотрим виды электрических двигателей, отметим их особенности, и поговорим о принципах работы каждого из них.

Двигатели постоянного тока

Для построения электроприводов с высокими динамическими характеристиками используют электродвигатели постоянного тока. Они отличаются высокой перегрузочной способностью и равномерностью вращения. Именно двигатели постоянного тока применяются зачастую в электротранспорте. Ими же комплектуются многие станки, машины, агрегаты, включая бытовую технику.

В основе работы классического двигателя постоянного тока — вращение рамки с током во внешнем магнитном поле: к рамке подводится ток через щеточно-коллектроный узел, а магнитное поле статора получают или от постоянных магнитов, или от того же постоянного тока (магнитное поле катушки с током). В результате рамка с током поворачивается в магнитном поле. Вместо рамки может выступать катушка с током на магнитопроводе - ротор.

Двигатели переменного тока

Электродвигатели переменного тока очень широко используются в быту и в промышленности, поскольку считаются более универсальными, по сравнению с двигателями постоянного тока. Двигатели переменного тока имеют простую конструкцию, более надежны, чем двигатели постоянного тока, и неприхотливы в обращении.

Например большинство домашних вентиляторов и промышленных вытяжек оборудованы именно асинхронными двигателями переменного тока. Ими же оснащены лебедки, насосы, станковое оборудование. Простота двигателей переменного тока промышленной частоты заключается в отсутствии щеточно-коллекторного узла и сложной электроники.

Шаговые двигатели

Шаговые электродвигатели функционируют, преобразуя дискретные электрические импульсы постоянного тока в механические перемещения (шаги). Офисная техника, станки, роботы, - везде, где требуется высокая скорость и равномерность перемещения рабочего органа, применяются сегодня шаговые электродвигатели. Для контроля скорости вращения ротора, электронным блоком регулируется частота следования импульсов и их скважность. Шаговый двигатель — это синхронный бесщеточный двигатель постоянного тока.

Сервоприводы (серводвигатели)

Сервопривод (следящий привод) — это высокотехнологичный двигатель постоянного тока. В отличие от шагового двигателя, у серводвигателя в конструкции присутствует еще и датчик положения ротора, при помощи которого реализуется механизм отрицательной обратной связи.

Двигатели данного типа способны развивать высокие обороты и мощность, как и шаговые двигатели постоянного тока, но регулировка положения рабочего органа оказывается более точной. Для станков с ЧПУ, сервопривод — как раз то, что нужно. Многие современные промышленные станки оборудованы именно сервоприводами, интегрированными в систему высокоточного компьютерного управления.

Линейные электродвигатели

У линейного двигателя постоянного тока вместо ротора — стержень (шток) с магнитами, прямолинейно перемещаемый через статор относительно катушки индуктивности. Двигатели данного типа набирают популярность в качестве приводов механизмов с возвратно-поступательными движениями в процессе работы.

Это надежное и экономичное решение, исключающее необходимость использовать какую бы то ни было механическую передачи. Импульсы необходимой полярности и длительности посылаются в катушку, формируя магнитное поле нужной конфигурации, которое со своей стороны действует на шток, причем текущее положение штока отслеживается благодаря датчикам Холла, встроенным в статор.

Синхронные электродвигатели

Говоря «синхронный двигатель», традиционно имеют ввиду двигатель переменного тока, у которого частота вращения (или угловая скорость) ротора равна угловой скорости движения магнитного потока в полости статора. Чаще всего речь о двигателях, роторы которых несут на себе постоянные магниты или обмотку возбуждения, создающую сильное собственное магнитное поле, препятствующее скольжению.

У синхронных двигателей скорость вращения ротора поэтому постоянна. Мощные вентиляторы, приводы подъемных кранов, насосов, - во многих применениях, где необходимы высокая мощность и постоянная скорость, независимо от нагрузки, используются синхронные двигатели.

Асинхронные электродвигатели

Чаще всего асинхронным двигателем называют двигатель переменного тока, у которого частота (или угловая скорость) вращения ротора отличается от угловой скорости магнитного потока статора. То есть в таком двигателе присутствует «скольжение». Асинхронные двигатели переменного тока бывают с короткозамкнутым (типа «беличья клетка») ротором или .

Более мощные асинхронные двигатели изготавливают с фазным ротором, величина магнитного потока у такого ротора регулируется реостатом, и скорость вращения получается регулируемой. Менее критичное (к зависимости частоты вращения ротора от нагрузки) оборудование оснащают асинхронными двигателями с короткозамкнутым ротором.

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.

Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

Несмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый , то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатели имеют самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Синхронный принцип работы электродвигателя на видео

Электродвигатель преобразует электроэнергию в энергию механического движения. Так же как и электрический генератор электродвигатель состоит обычно из статора и ротора, относясь к вращающимся электрическим машинам Выпускаются однако, двигатели у которых движущаяся часть совершает линейное (обычно прямолинейное движение (линейные двигатели).

Самым распространенным видом электродвигателей является трехфазный короткозамкнутый асинхронный двигатель принцип устройства которого представлен на рис. 1, роторная обмотка этого двигателя представляет собой систему массивных медных или алюминиевых стержней, размещенных параллельно друг другу в пазах ротора концы которых соединены между собой короткозамкнутыми кольцами.

Рис. 1. Принцип устройства короткозамкнутого асинхронного двигателя.
1- статор, 2 – ротор, 3 - вал, 4 - корпус

В случае применения алюминия вся обмотка (беличья клетка) обычно формируется путем литья под давлением. Вращающееся магнитное поле статора индуцирует в обмотке ротора ток, взаимодействие которого с магнитным полем статора приводит ротор во вращение. Скорость вращения ротора при этом всегда меньше чем магнитного поля статора и ее относительную разность со скоростью вращения магнитного поля статора (с синхронией скоростью) называют скольжением. Эта величина зависит от нагрузки на валу двигателя и составляет при полной нагрузке обычно 3… 5%. Для ступенчатого регулирования скорости может использоваться статорная обмотка с переключаемым числом полюсов по такому принципу могут выполняться, например, двух трех и четырехскоростные асинхронные двигатели. Для плавного регулирования скорости обычно осуществляется питание двигателя через регулируемый преобразователь частоты.

Для главного регулирования скорости асинхронного двигателя ниже номинальной ранее вместо короткозамкнутых двигателе использовались двигатели с фазным ротором, у которых роторная обмотка имеет такое же трехфазное исполнение как и статорная. Такая обмотка соединяется через контактные кольца, расположенные на валу двигателя с регулировочным реостатом где часть энергии потребляемой двигателем, превращается в тепло. Регулирование происходит, следовательно, за счет снижения КПД двигателя и в настоящее время применяется редко.

Короткозамкнутые асинхронные двигатели характеризуются своей компактностью и высокой надежностью, а также намного большим сроком службы, чем двигатели внутреннего сгорания. По размерам они обычно меньше и по массе легче, чем двигатели внутреннего сгорания той же мощности. Они могут изготовляться в очень большом диапазоне номинальных мощностей от нескольких ватт до нескольких десятков мегаватт. Двигатели малой мощности (до нескольких сотен ватт могут быть и однофазными.

Синхронные двигатели устроены так же, как и синхронные генераторы. При неизменной сетевой частоте они вращаются с постоянной скоростью не зависимо от нагрузки. Их преимуществом перед асинхронными двигателями считается то, что они не потребляют из сети реактивную энергию, а могут отдавать ее в сеть покрывая этим потребление реактивной энергии другими электроприемниками. Синхронные двигатели не подходят для частых пусков и применяются, главным образом, при относительно стабильной механической нагрузке и тогда, когда требуется постоянная скорость вращения.

Двигатели постоянного тока используются при необходимости плавного регулирования скорости. Это достигается путем изменения тока якоря и/или возбуждения при помощи полупроводниковых устройств (раньше - с помощью регулировочных реостатов) или путем изменения напряжения питания. Так как в настоящее время легко и без существенного изменения КПД (при помощи преобразователей частоты) осуществляется и плавное регулирование скорости двигателей переменного тока, то двигатели постоянного тока, из-за их большей стоимости, больших размеров и дополнительных потерь, возникающих при регулировании, стали применяться значительно реже, чем раньше.
Шаговые двигатели приводят в движение при помощи импульсов напряжения. При каждом импульсе ротор двигателя поворачивается на определенный угол (например, на несколько градусов). Такие двигатели используются в тихоходных механизмах, требующих обычно еще точного позиционирования. Могут изготовляться, например, двигатели, совершающие один обо рот за сутки или даже за год.

Линейные двигатели используются для линейного движения, когда преобразование вращающегося движения в линейное при помощи механических передач или других устройств невозможно или неприемлемо. Наиболее часто применяются асинхронные линейные двигатели, но существуют также синхронные и шаговые линейные двигатели и даже двигатели постоянного тока.

Основными преимуществами электрических двигателей перед двигателями внутреннего сгорания могут считаться
- меньшие размеры, меньшая масса и меньшая стоимость,
- намного более высокий КПД (обычно 90 ..95%),
- лучшая регулируемость (обычно с сохранением высокого КПД),
- высокая надежность и долгий срок службы,
- меньший шум и меньшая вибрация при работе,
- быстрый и беспроблемный (при необходимости - плавный) пуск,
- намного более простая эксплуатация,
- отсутствие потребления топлива и, как результат, отсутствие выбросов продуктов сгорания в окружающую среду,
- легкое присоединение к любым рабочим машинам и механизмам.
Применение электродвигателей может оказаться проблемным в случае, когда они должны размещаться на переносных и передвижных устройствах или на транспортных средствах. Для электропитания в таких случаях могут применяться, в зависимости от дальности и характера передвижения,
- гибкие кабели,
- контактные провода или контактные шины,
- размещаемые на передвижных средствах источники питания (аккумуляторы, топливные элементы, двигатель-генераторы и т. п.).

Во многих случаях эти способы питания ограничивают маневренность или дальность пробега транспортных средств (особенно автомобилей) или других передвижных машин в такой степени что применение двигателей внутреннего сгорания остается более рациональным. Первый электродвигатель был не электромагнитным, а электростатическим и его изготовил в 1748 году издатель и общественный деятель города Филадельфия (Philadelphia, США) Бенджамин Франклин (Benjamin Franklin, 1706-1790). Ротор этого двигателя представлял собой зубчатый диск, на зубья которого действовали импульсные силы притяжения и отталкивания, вызываемые электростатическими разрядами, диск совершал 12...15 оборотов в минуту и мог нести до 100 серебряных монет. Первые электромагнитные двигатели (приборы, в которых либо проводник, через который протекал ток вращался вокруг стержневого магнита (рис. 2), совершая при этом работу - перемешивая ртуть, либо стержневой магнит вращался вокруг проводника с током, изобрел в 1821 году ассистент Лондонского Королевского института (Royal Institution) Майкл Фарадей (Michael Faraday).

Рис. 2. Принцип устройства опытного прибора Майкла Фарадея для демонстрации электрического вращения.
1 - вращающийся металлический стержень, 2 - стержневой магнит, 3 - стеклянный или фарфоровый сосуд, 4 - ртуть, 5 – уплотнение, i - ток

Первый (качающийся) двигатель, который, в принципе, можно было бы соединить с приводимой рабочей машиной, изготовил в 1831 году учитель математики и природоведения школы мальчиков города Албани (Albany, США) Джозеф Генри (Joseph Henry, 1797-1878); принцип устройства этого двигателя представлен на рис. 3.

Рис. 3. Принцип устройства качающегося электродвигателя Джозефа Генри.
1 - постоянные магниты, 2 - качающийся электромагнит, 3 - вал, 4 - ртутные контакты.

После двигателя Генри было создано еще несколько различных опытных электродвигателей возвратно-поступательного движения. Первый вращающийся электродвигатель создал с целью реального применения 8 апреля 1834 года инспектор порта Пиллау rPiilau, Восточная Пруссия), инженер-строитель Мориц Герман Яко6и (Moritz Hermann Jacobi. 1801-1874), изучавший самостоятельно электротехнику в библиотеке и в лабораториях Кенигсбергского университета. Восьмиполюсный двигатель, у которого как статор, так и ротор состояли из четырех подковообразных электромагнитов и который совершал 80… 120 оборотов в минуту, получал питание из батареи гальванических элементов напряжением 6V. Мощность его на валу была приблизительно 15 W а КПД - около 13%. Якоби исследовал и совершенствовал свои двигатель, между прочим, в Тартуском университете, профессором гражданской архитектуры которого он был избран в 1835 году.

Мориц Герман (позже, в России - Борис Семенович) Якоби родился в 1801 году в Потсдаме (Potsdam, Германия) в зажиточной семье и получил хорошее домашнее образование; уже в юношестве он одинаково свободно владел немецким, английским и французским языками и отлично знал также латынь и древнегреческий язык. В 1828 году он окончил Геттингенский университет (Gottingen Германия) с квалификацией архитектора, работал затем на строительстве дорог, а в 1833 году переехал в Кенигсберг, где его младший брат Карл Густав Яков Якоби (Carl Gustav Jacob Jacobi, 1804-1851) был профессором математики. Он стал работать инспектором порта Пиллау и посещать Кенигсбергский университет для приобретения знаний по электротехнике. В 1834 году он построил вышеупомянутый двигатель, а в 1835 году, по инициативе профессора астрономии Тартуского университета Фридриха Георга Вильгельма Струве (Friedrich Georg Wilhelm Struve, 1793-1864) он был избран профессором гражданской архитектуры этого университета. Его двигатель вызвал интерес в Петербурге, и в 1837 году Якоби был прикомандирован к столичной Академии Наук для разработки электропривода военных кораблей, оставаясь до 1840 года официально на службе в Тартуском университете. В 1838 году Якоби испытал на Неве первый в мире электропривод с вращающимся двигателем (установленный на морском боте), но дальнейшие исследования показали, что для электропитания привода, к сожалению, нет технически и экономически пригодного источника энергии.

В 1839 году Якоби был избран членом-корреспондентом, а в 1842 году - членом Академии Наук и в дальнейшем занимался, в основном, развитием электромагнитного телеграфа, гальванотехники и метрологии. Неоднократно он встречался с Майклом Фарадеем, известными французскими и немецкими физиками того времени.

В середине 19-го века было разработано еще несколько разновидностей двигателей постоянного тока, но их практическому применению воспрепятствовали малая мощность и, как установил уже Якоби, недостаточная экономическая эффективность источников электропитания того времени - гальванических элементов и примитивных электромашинных генераторов. Более широко применение электродвигателей стало возможным только в 1866 году после появления генераторов постоянного тока с самовозбуждением.

После появления многофазной системы переменного тока немецкая фирма АЭГ стала исследовать возможности использования асинхронных двигателей, изобретенных ее главным инженером Михаилом Доливо-Добровольским (на немецкий лад Michael von Dolivo-Dobrowolsky) и представил 8 марта 1889 заявление на патентование короткозамкнутого асинхронного двигателя. После этого началось широкое применение надежных и высокоэффективных двигателей переменного тока. В настоящее время все вышеназванные электродвигатели достигли очень высокого технического уровня и находят широчайшее применение в стационарных установках, а в последнее время все чаще и в средствах передвижения.

Похожие статьи