Автомобильные фары и лампы. Принцип действия автомобильных фар Как называется задняя фара автомобиля

Есть множество неправильных представлений, когда дело доходит до передних фар. Учитывая, что фары являются одними из самых важных особенностей автомобилей, многие думают, что о передней оптике нет дезинформации. Ведь казалось, автомобильная передняя оптика имеет простую и понятную конструкцию. Тем не менее, в автопромышленности существует множество видов конструкций передних фар, что вызывает путаницу. В этой статье я хочу прояснить все заблуждения и объяснить конструкцию различных фар в настоящее время.

И так я разделил статью на три части:

- Корпус и конструкция передних фар

- Лампы

- Другая соответствующая информация / Разное

РАЗДЕЛ 1: Корпус и конструкция передних фар

Корпус фары это та часть оптики, внутри которой установлена лампа освещения. Как вы знаете на современном рынке автомобилей существует множество различных ламп освещения, начиная от обычной галогеновой, и заканчивая лазерными технологиями. От того какая лампа освещения стоит в передней оптике, зависит и конструкция корпуса фары.

Отражатель


Фары с отражателями, установленные в корпусе передней оптики на сегодняшний день являются самыми распространёнными в автопромышленности. Хотя в настоящий момент наблюдается тенденция замещения фар с отражателями на линзованную оптику. Я не собираюсь утомлять вас наукой о том, как работает автомобильная фара. Если кратко, то внутри фары рядом с отражателем, как правило, установлена лампа освещения. Свет, который излучает фара, отражается от хромированной краски, которая нанесена на отражатель. В итоге свет лампы, отражаясь от хромированной поверхности, выходит на дорогу.

Как правило, галогеновая автомобильная лампа также имеет небольшой участок хрома или защитного покрытия из другого материала (как правило, размещен на переднем торце лампы), который препятствует попаданию прямых лучей света в глаза водителей встречных автомобилей. В итоге лампа излучает свет не сразу на дорогу, а попадает в отражатель, который рассеивая лучи света, отправляет их на дорогу.

Недавно казалось, что этот тип ламп в скором времени исчезнет из автопромышленности. Особенно, после того как появились . Но в итоге сегодня галогеновые лампочки для автомобилей по-прежнему являются самыми распространенными в автомобильном мире.

Линза

Фары с линзами внутри в настоящий момент постепенно отбирают популярность у оптики с отражателями. Напомним, что впервые линзованные фары появились на дорогих люксовых автомобилях. Но затем по мере удешевления технологий, передняя линзованная оптика стала появляться и на обычных не дорогих транспортных средствах.

Что же из себя представляет линзованная передняя оптика? Как правило, этот вид фар вместо отражателей используют линзы (специальная оптическая колба, которая не отражает излучаемый свет от ламп на дорогу, а по сути, с помощью проекции передает освещение на дорогу).

В настоящий момент существует огромное количество различных типов линз и конструкций линзованных передних фар.

Но смысл работы линзованной оптики одинаков. Что же такое линза в передней фаре и как она работает?


Дело в том, что лизнованные фары формируют пучок света для освещения дороги совершенно по-другому в отличие от оптики с отражателями.

Например, внутри линзы также есть отражатель с хромированным покрытием, который отражает свет от лампы. Но в отличие от обычного отражателя, структура линзованного отражателя создана таким образом, чтобы не направлять свет на дорогу, а собирать его в специальном месте внутри фары - на специальной металлической пластине. Эта пластина, по сути, собирает свет в единый пучок и перенаправляет его в линзу, которая в свою очередь и проецирует направленный пучок света на дорогу.

Как правило, линзовання фара обеспечивает превосходную светоотдачу с резкой линией среза и сфокусированным светом.

РАЗДЕЛ 2: Лампы

Как мы уже сказали, самым главным в любой фаре является источник света. Самым распространенными источниками света в автомобильных фарах являются галогенные лампы накаливания.

В некоторых случаях придется приобретать новую оптику. Но так как светодиоды имеют очень долгий срок службы, то даже сегодня применение светодиодного освещения дороги экономически оправдано.

Лазеры (будущее)


В настоящий момент ряд автомобильных компаний уже начали внедрять на некоторые дорогие модели новое поколение оптики, которая оснащается в качестве источников света инновационными лазерами.

Правда пока что лазерная оптика в автопромышленности еще остается большой редкостью из-за большой себестоимости изготовления подобной оптики.

Так как же устроена лазерная оптика? На самом деле в лазерных фарах также применяются светодиоды, которые под воздействием лазера выдают более равномерное и яркое свечение. Так, световой поток обычных светодиодов составляет 100 люменов, когда как в лазерной оптике светодиоды выдают 170 люменов.


Главное преимущество лазерных фар в их энергопотреблении. Так по сравнению со светодиодной автомобильной оптикой, лазерные фары со светодиодами потребляют в два раза меньше энергии.

Еще одно преимущество лазерных фар, размер применяемых диодов. Например, лазерный светодиод, размер которого в сто раз меньше обычного светодиода, выдает тот же уровень свечения. В итоге это позволяет автопроизводителям уменьшить размер фар без потери качества освещения автодороги.

К сожалению, в наши дни лазерные источники света в автопромышленности стоят очень и очень дорого. Так что в ближайшее время лазерная оптика не будет использоваться массово. Но в будущем, скорее всего, лазерные фары постепенно вытеснят все традиционные источники освещения автомобилей.

РАЗДЕЛ 3: Другая важная информация / Разное


Теперь, когда мы рассмотрели все различные типы технологий передней автомобильной оптики, пришло время поговорить о некоторых возникающих вопросах. Так например давайте узнаем можно ли использовать в галогеновых фарах ксеноновые лампы и наоборот?

Как правило, для использования ксеноновых ламп передняя оптика должна быть оснащена линзой, которая проецирует свет на дорогу. Также ксеноновая оптика обязательна, как правило, оснащается корректором фар.

В основном в наши дни используется автоматический корректор фар, который изменяет угол наклона линзы, с целью обезопасить встречных водителей от яркого дневного света ксеноновых фар. Угол изменяется в зависимости от количества пассажиров внутри. В том числе все ксеноновые фары должны обязательно быть оборудованы омывателем оптики, поскольку ксеноновый источник света не эффективен при грязных фарах.

Что касаемо галогеновых ламп, то они в отличие от ксеноновых могут быть установлены в линзованную оптику. А как же светодиоды? Так как светодиодные лампы, как правило, имеют направленный источник света, то устанавливать их в фару с обычными отражателями не безопасно, так как в этом случае эффективность освещения дороги будет низкой. Поэтому большинство автопроизводителей оснащает светодиодную оптику линзами, которые проецируют свет от светодиодов на дорогу. Подробней об этом ниже:

Можно ли установить ксеноновые лампы в обычные фары с отражателями?


В принципе можно, но ничего хорошего из этого не выйдет. Во-первых, согласно Российскому законодательству применения ксеноновых ламп в фарах с отражателями категорически запрещено, поскольку это создает опасность встречным водителем на дороге, которые могут быть ослеплены ярким источником света ксеноновых ламп рассеянного отражателями фар.

В итоге, установив в фары с отражателями ксеноновые лампы, вы получите только внешнее красивое свечение. Но освещение дороги будет намного хуже, чем при использовании галогенных ламп, поскольку для ксеноновых источников освещения необходима линзованная оптика. Кроме того, ксеноновые лампы, установленные в отражатель, отвратительно освещают дорогу в дождливую погоду.

В том числе, хотим отметить, что ксеноновые лампы в короткий срок выжгут хромированное напыление ваших отражателей. В итоге, даже установив в последующем снова галогенные лампы, ваши фары будут светить уже не так эффективно как прежде.

Какая ответственность за установку ксеноновых ламп в фары с отражателями?

Как мы уже сказали установка ксеноновых источников света в автомобильные фары, оборудованные отражателями под галогеновые лампы, запрещено.

Так, в соответствии с частью 3 статьи 12.5 КоАП РФ, управление транспортным средством, на передней части которого установлены световые приборы с огнями красного цвета или световозвращающие приспособления красного цвета, а равно световые приборы, цвет огней и режим работы которых не соответствуют требованиям Основных положений по допуску транспортных средств к эксплуатации и обязанностей должностных лиц по обеспечению безопасности дорожного движения влечет лишения водительских прав сроком от 6 месяцев до 1 года с конфискацией ксенонового оборудования и ламп.

То есть, другими словами, если вы не законно установите на свою машину ксеноновые лампы в фары, которые не предназначены для данного вида источников света, то вас не оштрафуют, а сразу лишат водительского удостоверения, а после окончания срока лишения вам предстоит пересдать теоретический экзамен.

Можно ли установить светодиодные лампы в линзу ксеноновой фары?


Теоретически можно. Но придется покупать и ставить либо Китайский вариант, который вряд порадует вас качеством освещения дороги и долговечностью, либо вам предстоит разбирать фару и устанавливать другую блок-линзу. В последнем варианте качество освещения действительно будет лучше и возможно даже эффективнее ксеноновых источников света. Но опять же если вы купите качественные светодиодные лампы и блок-линзу под них, которая стоит немаленьких денег.

Что касаемо законодательства, то в настоящий момент нет прямого запрета на использования в обычных фарах светодиодных ламп ближнего и дальнего света. Также не существует пока единых стандартов и ГОСТов, которые предписывали бы правила установки и использования на транспортных средствах светодиодных источников ближнего и дальнего освещения.


В настоящий момент правила и стандарты только разрабатываются. Так что в ближайшем будущем, скорее всего, все произойдет точно также как ксеноновыми лампами. Вспомните, что творилось на Российских дорогах еще 10 лет назад, когда каждый второй автомобиль был оснащен не заводским ксеноном. Сегодня та же картина.

На дороге каждый день становится все больше автомобилей с незаводскими светодиодными лампами ближнего и дальнего света, когда как большинство владельцев автомобилей, оснащенных фарами с обычными отражателями, больше не используют ксеноновые источники освещения, опасаясь лишиться прав (правда многие уже поняли, что «колхозный» ксенон реально снижает безопасность на дороге).


Так что использовать в отражателях или линзах под ксенон светодиодные лампы также опасно, как и «колхозный» ксенон, поскольку светодиодная лампа не будет освещать дорогу эффективно в отражателе или в линзе, предназначенную под ксеноновую лампу.

Помните, что под светодиоды также нужен специальный прожектор (блок-линза со специальным оборудованием, которое собирает свет от светодиодной лампы в пучок и направляет его в линзу-стекло).

Что такое Би-Ксенон?

Термин Би-Ксенон означает, что автомобиль оснащен единой ксеноновой лампой, которая выполняет работу, как источник ближнего света, так и источник дальнего света. Те же машины, которые не оснащены Би-Ксеноновыми фарами, как правило, оборудованы либо галогенными лампами, либо комбинированными источниками света (ближний свет: ксеноновые лампы, дальний свет: обычная галогенная лампа накаливания).

В автопромышленности распространены два вида Би-ксеноновых фар.

Первый вид использует специальную шторку в линзе, расположенную вне колбы ксеноновой лампы. В итоге при включении дальнего света шторка направляет источник света в отражатель, который далее отправляет свет в линзу в спектре свечения для дальнего света.

При втором виде Би-ксеноновых фар используется специальная Би-ксеноновая лампа, которая например, при включении дальнего света самостоятельно сдвигает колбу свечения лампы относительно отражателя встроенного в линзу. В итоге свет на дорогу проецируется в спектре ближнего освещения.

Какие фары лучше: Галогеновые, Ксеноновые или Светодиодные?


В настоящий момент существует большие споры по этому поводу. Как говорится, сколько людей, столько и мнений. Тем не менее, сегодня уже точно известно, что галогеновые лампы не выдерживают никакой конкуренции по сравнению с ксеноновыми и светодиодными источниками искусственного света.

Фары современного автомобиля — это не просто фонари, а сложные светотехнические устройства, которые постоянно совершенствуются. Сегодня в фарах используются различные источники света, а сами фары имеют особое устройство, позволяющее достичь нужных характеристик. О видах автомобильных фар и перспективах автомобильной светотехники читайте в этой статье.

Типы и маркировка автомобильных фар

Вплоть до начала 1990-х годов на всех автомобилях устанавливались классические фары , оборудованные различными видами ламп накаливания, но сегодня можно выделить как минимум три типа фар, которые отличаются используемыми в них источниками света:

Фары с лампами накаливания;
- Фары с ксеноновыми лампами;
- Фары со светодиодами.

Прежде чем говорить о каждом из этих типов фар, нужно несколько слов сказать об их маркировке.

Каждая фара имеет на рассеивателе маркировку, которая говорит о характеристиках фары, ее особенностях и сферах применения. Маркировка установлена международным стандартом и имеет следующую структуру:

Верхний ряд букв - обозначение категории;
- Средний ряд цифро-буквенных индексов - знак международного утверждения (буква и цифра в кружке), код выдавшей утверждение страны и сила светового потока для дальнего света (округленно);
- Стрелка (или ее отсутствие) - обозначение назначения фары для право- или левостороннего движения;
- Нижний ряд цифро-буквенных индексов - код официального утверждения.

Наибольший интерес для рядового автовладельца представляет верхний буквенный ряд, который обозначает категорию фары. В нем могут присутствовать следующие буквенные коды:

H - фара только для галогенных ламп;
- C - фара ближнего света;
- R - фара дальнего света;
- S - лампа-фара;
- PL - рассеиватель изготовлен из пластика;
- B - противотуманная фара.

Также нужно сказать и о стрелке под знаком международного утверждения. Отсутствие стрелки означает, что фара предназначена для правостороннего движения, наличие стрелки - для левостороннего, а двухсторонняя стрелка означает, что фара универсальна.

Фары с лампами накаливания

Наиболее распространенными остаются фары с лампами накаливания. Однако сегодня в фарах все чаще используются галогенные лампы или лампы, наполненные ксеноном и криптоном. В галогенных лампах вольфрамовая нить накала (или две нити в случае двухнитевых ламп) помещены в колбу, заполненную парами йода или брома. Эти газы предотвращают осаждение на стенках колбы атомов вольфрама, испарившихся с нагретой до 3000°С нити накала, что значительно продлевают срок службы лампы.

Существует несколько типов галогенных автомобильных ламп, которые отличаются способом установки в фаре и подключением к бортовой электрической сети. Наиболее часто используются лампы типов H1, H3, H4, H7, H9, H11, HB3, HB4 и R2, причем среди всех этих типов наибольшее распространение получили лампы H4.

Мощность галогенных ламп может достигать 130 Вт (хотя обычно она лежит в пределах 35-60 Вт), световой поток - порядка 1000 лм для ближнего света и 1650 лм для дальнего, однако некоторые типы ламп создают световой поток до 2100 люмен.


Фары с ксеноновыми лампами

Нужно сразу отметить, что здесь речь идет о газоразрядных ксеноновых лампах, которые имеют кардинальные отличия от обычных ламп накаливания. В этих лампах световой поток создается электрической дугой, возникающей между электродами, помещенными в колбу с ионизированным газом.

Интересно, что ксеноновые автомобильные лампы имеют принципиальное отличие от ксеноновых ламп, используемых в фотовспышках или мощных кинопроекторах. В автомобильных лампах основной световой поток создается дугой, возникающей в атмосфере паров ртути и солей скандия и натрия, а ксенон выступает здесь в качестве «запала» для быстрого (доли секунды) розжига лампы. Поэтому автомобильные ксеноновые лампы де-факто являются металлогалогенным источником света, но этот термин не прижился, так как создавал путаницу. И первые производители газоразрядных ламп назвали их ксеноновыми, что подчеркнуло их отличие от обычных галогенных ламп накаливания.

Для работы ксеноновых ламп необходимо постоянное напряжение 42 или 85 вольт (в зависимости от типа), однако для розжига через лампу нужно пропустить импульс переменного тока напряжением до 25 000 вольт и частотой от 400 Гц. Такой импульс формируется специальным электронным блоком розжига, индивидуальным для каждой лампы.

Ксеноновые лампы создают мощный световой поток (до 3200 лм), но при этом они экономичнее и долговечнее ламп накаливания. Однако большим недостатком является необходимость установки блока розжига для каждой лампы.

Сегодня ксеноновые лампы стандартизированы по типу цоколя и другим характеристиками. Наиболее часто находят применение лампы типов D1S, D1R, D2S, D2R, D3S, D3R, D4S и D4R. Здесь код "S" означает, что лампа предназначена для фар прожекторного типа, а "R" - для фар с отражателями (рефлекторного типа).


Светодиодные фары

Это новый тип фар, который, в сущности, все еще находится в экспериментальной стадии. Впервые светодиоды на автомобилях были использованы еще в 1992 году, однако тогда они заменяли лампы в габаритных огнях и сигналах поворота, и лишь только в последние годы светодиоды стали устанавливаться в фарах головного света.

В основе светодиодных фар лежат мощные сверхъяркие светодиоды, излучающие белый свет. Обычно такие фары изготавливаются в виде матриц - набора нескольких светодиодов, расположенных в ряд или в иной конфигурации.

У светодиодных фар есть ряд неоспоримых преимуществ:

Экономичность (светодиод при равной яркости с лампой накаливания потребляет в разы меньше электроэнергии);
- Длительный срок службы (10 000 часов для светодиода - не предел);
- Нечувствительность к вибрациям и ударам;
- Малые габариты.

Но светодиодные фары имеют несколько недостатков, которые препятствуют массовому распространению этого источника света. Главный из недостатков - дороговизна мощных светодиодов и фар на их основе. Так, у автомобилей премиум-класса фары на светодиодах могут стоить более ста тысяч рублей за штуку! Это препятствует массовому распространению светодиодной светотехники на менее дорогих автомобилях.

Но у светодиодных фар есть большой потенциал, ведь они значительно меньше по габаритам, надежнее и по ряду показателей лучше фар на лампах накаливания или ксеноновых лампах. Так что в ближайшие годы светодиоды получат самое широкое применение.

У современных автомобилей, фары условно делятся на несколько различных типов – это противотуманные фары, для ближнего или дальнего света, а также и специализированные дополнительные фары.

К дополнительным фарам относятся прожектора, которые обеспечивают безопасное движение, осуществляемое по магистрали в темное время суток и фары бокового или заднего освещения для более комфортного маневрирования по бездорожью либо на парковке. Специфика света, исходящего от той или иной разновидности фар, соотносится с расположением лампы по отношению к ее рисунку на стекле и местом размещения самой фары.

Противотуманная фара (Fog lamp)

В любой туман, дождь или же снег фара для ближнего света начинает снижать эффективность по нормальному освещению дороги.

Одной из первых реакций на явное ухудшение видимости, станет включение мощного дальнего света. Однако, сделав это, водитель в тот же момент поймет, что ситуация лишь еще больше ухудшилась, так как произошел эффект ослепления. Объяснение этому достаточно простое - дальний свет просто не имеет никаких ограничений и также не обрезан в своей верхней части луча. Луч от дальнего света отражается от снежинок или капелек тумана и начинает ослеплять водителя обратным светом.

При стабильном внешнем освещении то количество света, которое попадает непосредственно в глаз за определенное количество времени, будет пропорционально общей площади зрачка. Реакция глаза на внешнюю освещенность выражается в рефлекторном расширении или же сужении зрачка, при этом реакция происходит и в зрачке неосвещенного глаза. Данный эффект называется содружественной реакцией на свет.

Реакция глаза на свет представляет собой полезный регуляторный механизм, так как при ярком освещении уменьшается количество того света, который падает непосредственно на сетчатку. Таким образом, луч света от фар при помощи которого освещается дорога, становится почти не различим или даже совсем невиден - это и есть так называемый эффект ослепления.

Для плохих погодных условий специально разработана противотуманная фара, которая предусматривает изначально узконаправленное применение. Данные фары обладают широкой диаграммой распределения света по горизонтали, а также очень узким лучом по вертикали. Главной задачей противотуманных фар является способность светить под дождь, туман или снег и тем самым не ослеплять водителя своим отраженным светом, как это обычно происходит при использовании дальнего света.

Требования к таким фарам: верхняя граница света должна быть предельно резкой, угол рассеивания по вертикали должен быть, как можно меньше - желательно около 5 град, а по горизонтали наоборот, как можно больше - около 60 град, и максимум света должен быть ближе к верхней границе.

Не рекомендуется устанавливать мощные ксеноновые лампы в противотуманные фары. В данном случае нарушится фокусировка фары, так как ксеноновая лампа не имеет фиксированного источника света, а вместо этого там работает вращающаяся высоковольтная дуга, которая образует светящейся шар. Такая фара, рассчитанная под конкретный вид ламп, не справится с новым источником яркого света и, в результате этого, в отражателе возникнут взаимные многократные преломления и отражения, что вызовет размытие необходимых светотеневых границ и в последующем - ослепление попутных и встречных водителей. Кроме того, противотуманная фара потеряет свою способность обеспечить освещение и видимость дороги в сложных погодных условиях.

Кроме передних, существуют и задние противотуманные фонари. Их так называют из-за того, что они предназначены для условий плохой видимости и для водителей, которые едут позади вас. Соединять их вместе со стоп сигналами, и включать их ясной ночью, без наличия тумана - запрещено. К примеру, в “пробке” такие фонари с очень мощными лампами в 21W явно будут если и не слепить, то уж точно раздражать едущих позади вас водителей. Да и обычные стоп сигналы на их фоне будут просто теряться. Иными словами, не правильно включенные противотуманные задние фонари не помогут, а лишь навредят.

Ближний свет (Low Beam)

Фара для ближнего света – это световой прибор, который предназначен для освещения пути впереди данного транспортного средства. Технические параметры этих фар подбираются таким образом, чтобы обеспечить уверенную видимость дороги не менее чем на 60 метров и безопасный разъезд на узкой дороге без эффекта ослепления встречных водителей.

Все современные системы для освещения, возможно, разделить на два типа светораспределения – на американскую и европейскую.

Данные системы освещения различны как по самой структуре создаваемого пучка света, так и по физическим принципам его формирования. Этот момент обусловлен как специфическими особенностями организации автомобильного движения, так и качеством покрытия дорог. Каждая из систем имеет как четырех, так и двух фарное исполнение.

На автомобилях, выпущенных в Америке, установлены фары, а еще чаще и лампы-фары, где нить накала для ближнего света немного смещена выше по горизонту. Из-за такого расположения, поток ближнего света слегка смещен в правую сторону обочины дороги и при этом наклонен вниз. В формировании световых лучей дальнего и ближнего света принимает участие вся отражающая поверхность рефлектора фары.

Европейская система конструктивно выполнена совсем иначе, нить накаливания у ближнего света немного смещена вверх по отношению к фокусу отражателя и, кроме того, нить прикрыта от нижней полусферы особым металлическим экраном.

Здесь в создании ближнего света принимает участие только лишь верхняя часть рефлектора фары. Сам экран с левой стороны просто срезан под углом в 15 градусов, такое решение позволяет добиться ассиметричного и четкого луча ближнего света. Граница зоны света будет четкой, правая обочина станет ярко освещенной, а левая сторона луча не будет ослеплять встречных и попутных водителей. Дальность ближнего света не превысит 60 метров. Большинство современных фар ближнего света, точно так же как и дальних, выполнены с применением прозрачного стекла, а создание ассиметричного луча протекает на поверхности самого отражателя, который обладает выраженным рельефом. Данная конструкция позволяет значительно увеличить яркость потока света, так как основной луч не станет рассеиваться на специальной поверхности особого рифленого стекла фары и, обычно, имеет ту же самую яркость на всей освещаемой плоскости. Такую технологию называют free form, и она применяется почти на всех современных автомобилях, как в дополнительной, так и в главной оптике.

Дальний свет (Main Beam или Hi Beam)

Фара, применяемая для дальнего света – это световой прибор, который предназначен для освещения дороги перед транспортным средством, в случае отсутствия встречного транспорта. Освещение дороги дальним светом обеспечивается на расстоянии до 100-150 метров, это достигается при помощи плоского и яркого луча света достаточно большой силы.

Фары, используемые для дальнего света можно условно разделить на две разные категории. К первой, относятся штатные фары для дальнего света, которые изначально входят в комплектацию любого транспортного средства, а ко второй категории относят дополнительные фары, самых разных форм и размеров, имеющих разнообразные мощности ламп и различные характеристики светового луча.

Обычно, штатные фары у новых автомобилей в угоду дизайну обладают довольно скромными размерами отражателя и соответственно не самыми лучшими характеристиками. Для редких ночных поездок, штатных фар будет вполне достаточно. Однако, если ночные поездки, да еще и на дальние расстояния стали для вас жизненной необходимостью, то в случае установки дополнительных фар для дальнего света, вы значительно сможете обезопасить движение в ночное время суток.

В настоящее время, выбор фар настолько разнообразен, что предоставляет широкую возможность приобрести навесные фары, как на небольшой легковой автомобиль, так и на массивный внедорожник. Определившись с дизайном фар и их размерами, необходимо также подобрать и их основные технические характеристики, а именно мощность фары и форму ее луча.

Быстрое движение ночью по магистрали требует максимальной дальности луча, для полноценной реакции на возникшую преграду. Для этого лучше всего подойдут фары, у которых будет узкий луч света, где вся мощность фары будет фокусироваться на достижении предельно максимальной дальности. Фары данного типа называют прожектором. Он формирует узкий и при этом сильно сконцентрированный луч и прекрасно обеспечивает освещение любых предметов на удалении до одного километра.

Если вы много передвигаетесь по проселочным или не главным дорогам, то в этом случае будет гораздо важнее ширина самого луча, освещающего, как обочину, так и всю прилегающую к ней территорию. Не надо забывать, что именно обочина дороги в темное время суток таит в себе много разных неожиданностей. Для данных условий, мы рекомендуем вам фары как раз для дальнего света с широким лучом. Такие фары, может и не так “дальнобойны”, как, к примеру, прожектора, но их будет вполне достаточно для своевременной и быстрой реакции на появившееся препятствие.

И, пожалуйста, не забывайте, что для того чтобы избежать ослепления встречных водителей, дальний свет в автомобиле должен быть переключен на ближний еще до сближения с ними. Обычно правильным расстоянием для перехода на ближний свет считается 150 метров либо такой переход может быть произведен и на большем расстоянии, если встречный водитель переключает периодически свет своих фар. Кроме того, ослепление может произойти также посредством зеркала заднего вида. Достаточно опасным считается неожиданное ослепление встречных автомобилей, которые движутся за поворотом или же за переломом продольного профиля пути. В таких сложных случаях крайне необходимо перейти с дальнего света на ближний еще заблаговременно.

Передняя оптика автомобиля способна сменить хоть и не весь его вид, но на 40% как минимум. Многие производители стали использовать светодиодную оптику на своих новых моделях. Расскажем о принципе работы и устройстве матричных фар.


Содержание статьи:

Ведущую позицию в области оптики держит компания Audi. Начиная с 2013 года Audi стали устанавливать матричную оптику или более известные как Matrix LED headlights на обновленную модель A8. Как утверждают инженеры компании, они поднимают уровень безопасности и облегчают управление автомобилем.

Изначально базу для матричной оптики положила компания Opel под названием Matrix Beam. В сравнении с обычной оптикой, матричные фары намного сложней. Она состоит из модуля ближнего и модуля дальнего света, так же в наличии есть дневные ходовые огни, габаритные огни и блок поворотов. В дизайнерском решении есть воздуховод с вентилятором для охлаждения механизмов и блок управления, на каждую фару свой.

Модули дальнего и ближнего света матричной оптики


Не смотря на сложность технологии, матричные фары вмещают в себе модуль дальнего и ближнего света. Каждый блок уникален по своему, как по строению, так и по управлению. Набор дальнего света матричных фар состоит из 25 светодиодов, объединенных по пять штук в группу. Совокупно они образуют матрицу дальнего света. Каждый блок матричный фар из пяти светодиодов имеет свой отдельный радиатор и отражатель. Благодаря такому инженерному решению, с помощью матриц реализовано порядка миллиарда разных комбинаций по распределению света.

Что ж касается модуля ближнего света, то он располагается под дальним светом. В его составе 15 светодиодов. Так же по пять светодиодов в блоке, но более слабые по мощности. В самом низу оптики разместились дневные ходовые огни, габариты и светодиоды указателей поворотов. Всего в таком блоке матричной фары можно насчитать 30 последовательных светодиодов.

Как устроена матричная фара


С наведенной информации видно, что в основе матричной фары лежат светодиоды и никаких других осветительных приборов. Действительно, такое строение выдаст намного больше света, чем ранее известные виды оптики.

Для лучшего вида элементы матричной оптики подчеркнули дизайнерским обрамлением в современном стиле. Все части оптики, включая блок управления и принудительную вентиляцию, помещены в пластмассовый корпус, который так же является основой и защищает от воздействия внешних факторов. Лицевую часть матричной фары закрывает прозрачный рассеиватель.

Становится понятно, что при наличии блока управления, вся система контроля и управления будет электронной, по традиции включая входные устройства и исполнительные элементы. В качестве входных устройств считаются различные датчики и видеокамера.

Видеокамера дает информацию о наличии других автомобилей на дороге. Таким образом, блок управления будет переключать дальний и ближний свет автоматически, регулировать угол и яркость оптики. Если же говорить о датчиках матричной оптики, то зачастую они используются от других систем, таких как угол поворота руля, датчик скорости автомобиля, датчик просвета дорожного, датчик освещения и датчик дождя. Именно эти датчики отвечают за комфортную езду и своевременное срабатывание различных систем.


Если же в автомобиле есть навигационная система, то в блок управления матричных фар будет использовать данные с маршрута, характер вождения автомобиля, рельеф дороги и местности, а так же учитывать проезд по населенным пунктам.

Главную роль в матричных фарах несет блок управления. Он обрабатывает информацию, полученную от входных устройств, и зависимо от полученных данных включает или выключает определенный ряд светодиодов. Новшеством стоит отметить то, что в матричной оптики не используются поворотные механизмы, как это было у ксеноновых фарах. Все функции выполняют благодаря статическим светодиодам и электронике матричных фар.

Разновидность функций освещения в матричной оптике


Чем сложней устроена конструкция оптики, тем больше функций она может выполнять. В матричной оптики насчитывают девять разновидностей функций освещения:
  • постоянный дальний свет;
  • освещение для автомагистралей;
  • ближнее освещение;
  • адаптивное освещение;
  • освещение на перекрестках;
  • освещение в любую погоду;
  • подсвечивание пешеходов;
  • адаптивное динамическое освещение;
  • динамический указатель поворотов.
Список не малый как видим, рассмотрим по каждому пункту отдельно, как устроен и принцип освещения.

Полисегментальный дальний свет позволит водителю двигаться с постоянным включенным дальним светом. В таком случае будут задействованы 25 отдельных светодиодов дальнего света. Так же будет задействована видеокамера, которая в темное время суток следит за встречными и попутными автомобилями по их свету фар. Как только обнаружен автомобиль, блок управления выключает часть светодиодов, которые направлены на движущийся автомобиль. Свободное пространство дороги будет освещаться в прежнем виде. Для уменьшения ослепления водителей яркость оставшегося блока матричной оптики будет уменьшена. По данным с паспорта, блок управления матричных фар одновременно может распознать до восьми автомобилей.

Свет для движения по автомагистрали основывается на полученную информацию с навигационной системы. Адаптивная система сужает конус дальнего света матричных фар, таким образом, чтоб максимально направить вперед и сделать удобной для других водителей.

Ближнее освещение имеет традиционную форму, средняя часть дороги освещается меньше, а вот боковая часть и обочина больше. При этом матричная оптика направляется вниз в зависимости от рельефа дороги и населенного пункта.

Адаптивный свет направлен на лучшее освещение машины спереди и сбоку во время выполнения маневра поворота. В таком случае система матричных фар в каждой из фар задействует по три светодиода, которые включаются или выключаются при повороте руля или срабатывании поворотов.

Освещение перекрестков предназначено для освещения перекрестков при приближении к ним. В этом случае для матричных фар так же задействована навигационная система, на основе информации которой и определяется перекресток.

Всепогодное освещение из самого названия говорит о том, что при движении в плохих погодных условиях (туман, дождь, снег) будет меняется качество освещения. Блок управления настроить светодиоды матричной оптики таким образом, чтоб избежать ослепления от своих же фар. Интенсивность светодиодов матричной фары будет меняться в зависимости от видимости.

Подсвечивание пешеходов в матричных фарах реализовано на высоком уровне. В случае обнаружения пешехода с помощью камеры и системы ночного виденья, на обочине или опасной близости от нее оптика будет троекратно сигнализировать дальним светом об этом. Тем самым предупреждать как водителя, так и пешехода.

Динамическое адаптивное освещение это предпоследний вариант в матричных фарах. Суть его работы направлена на освещение дороги во время поворота. Поворачивая рулевое колесо, яркость светового пучка перенаправляется с центральной части в сторону поворота. То есть одна часть светодиодов становится тусклее, другая ярче.

Динамический указатель поворотов матричных фар рассчитан на управляемое движение светодиодов в направлении поворота. Таким образом, 30 последовательных светодиодов оптики включаются последовательно с периодичностью в 150 мс. Со стороны это не только красиво выглядит, но и дает больше информации о том или этом маневре автомобиля.


Многие производители уже готовят свои автомобили под внедрение подобной технологии матричной оптики, но насколько это удастся, пока никто не может сказать. На данный момент компания Audi является единственным правообладателем подобной технологии в оптике и захочет ли она делиться с другими производителями остается под вопросом.

Видео о принципе работы матричной оптики и её строении:


Чем ксеноновые лампы фар отличаются от галогенных? Кто впервые применил в автомобиле лампы накаливания? Какими бывают «адаптивные» фары? Мы решили проследить весь путь эволюции автомобильных систем освещения - от ацетиленовых горелок до новейших «умных» головных систем, в которых лучи от светодиодов будут освещать дорогу по командам системы навигации.

До лампочки
До лампочки были свечи. Или масляные горелки. Но светили они настолько слабо, что ночью автомобиль было проще оставить дома, чем путешествовать «на ощупь».

Первым источником автомобильного света стал газ ацетилен - использовать его для освещения дороги в 1896 году предложил летчик и авиаконструктор Луи Блерио. Запуск ацетиленовых фар - целый ритуал. Сначала требуется открыть краник ацетиленового генератора, чтобы вода закапала на карбид кальция, который находится на дне «бочонка». При взаимодействии карбида с водой образуется ацетилен, который по резиновым трубкам поступает к керамической горелке, что находится в фокусе отражателя. Теперь шофер должен открыть стекло фары, чиркнуть спичкой - и пожалуйста, в светлый путь. Но максимум через четыре часа придется остановиться - для того, чтобы вновь открыть фару, вычистить ее от копоти и заправить генератор новой порцией карбида и воды.

Однако светили карбидные фары на славу. Например, созданные в 1908 году Вестфальской металлопромышленной компанией (так в то время называлась Hella) ацетиленовые фары освещали до 300 метров пути! Столь высокого результата удалось достичь благодаря использованию линз и параболических рефлекторов. Кстати, сам параболический отражатель еще в 1779 году изобрел Иван Петрович Кулибин - тот самый Кулибин, который создал трехколесную «самокатку» с маховиком и с прообразом коробки передач.

Первая автомобильная лампа накаливания была запатентована еще в 1899 году французской фирмой Bassee & Michel. Но вплоть до 1910 года лампы с угольной нитью накаливания были ненадежными, очень неэкономичными и требовали тяжелых батарей увеличенного размера, которые к тому же зависели от станций подзарядки: автомобильных генераторов подходящей мощности еще не существовало. И тут произошел переворот в «осветительных» технологиях - нити накаливания стали делать из тугоплавкого вольфрама (температура плавления 3410°С), который не «выгорал». Первым серийным автомобилем с электрическим светом (а еще - с электрическим стартером и зажиганием) стал Cadillac Model 30 Self Starter («самозапускающийся») 1912 года. Уже через год 37% американских автомобилей имели электроосвещение, а еще через четыре - 99%! С разработкой подходящей динамомашины исчезла и зависимость от зарядных станций.

Кстати, если вы думаете, что лампу накаливания изобрел Томас Альва Эдисон, то это не совсем так. Да, именно Эдисон всерьез занялся лампочками, когда газ в его мастерской отключили за неуплату. И именно Эдисон в 1880 году представил исчерпывающее обоснование того, что следует использовать лампы с угольной нитью накаливания, помещенной в безвоздушное пространство стеклянного шара. Эдисон придумал и цоколь. Но базовая конструкция лампы накаливания принадлежит русскому электротехнику Александру Николаевичу Лодыгину, уроженцу Тамбовской губернии. Свою разработку он представил на шесть лет раньше. Более того, исторические документы упоминают некоего немецкого часовщика Генриха Гебеля, который сумел с помощью электричества раскалить до свечения обугленное бамбуковое волокно, вставленное в стеклянную колбу, аж 150 лет назад, в 1854 году. Вот только на патент у Гебеля банально не хватило денег…

Ослепительные идеи

Впервые проблема ослепления встречных водителей возникла с появлением карбидных фар. Боролись с ней по-разному: перемещали рефлектор, выводя из его фокуса источник света, с той же целью двигали саму горелку, а также ставили на пути света различные шторки, заслонки и жалюзи. А когда в фарах засветилась лампа накаливания, в электрическую цепь при встречных разъездах даже включали добавочные сопротивления, снижавшие накал нити. Но лучшее решение предложила фирма Bosch, в 1919 году создавшая лампу с двумя нитями накаливания - для дальнего и ближнего света. К тому времени уже был придуман рассеиватель - покрытое призматическими линзами стекло фары, отклоняющее свет лампы вниз и по сторонам. С тех пор перед конструкторами стоят две противоположные задачи: максимально осветить дорогу и не допустить ослепления встречных водителей.

Увеличить яркость ламп накаливания можно, подняв температуру нити. Но при этом вольфрам начинает интенсивно испаряться. Если внутри лампы вакуум, то атомы вольфрама постепенно оседают на колбе, покрывая ее изнутри темным налетом. Решение проблемы нашли во время Первой мировой войны: с 1915 года лампы стали заполнять смесью аргона и азота. Молекулы газов образуют своебразный «барьер», препятствующий испарению вольфрама. А следующий шаг был сделан уже в конце 50-х годов: колбу стали наполнять галогенидами, газообразными соединениями йода или брома. Они «связывают» испаряющийся вольфрам и возвращают его на спираль. Первую галогенную лампу для автомобиля представила в 1962 году Hella - «регенерация» нити позволила поднять рабочую температуру с 2500 К до 3200 К, что увеличило светоотдачу в полтора раза, с 15 лм/Вт до 25 лм/Вт. При этом ресурс ламп вырос вдвое, теплоотдача снизилась с 90% до 40%, а размеры стали меньше (галогенный цикл требует близости нити и стеклянной «оболочки»).

А главный шаг в решении проблемы ослепления был сделан в середине 50-х - французская фирма Cibie в 1955 году предложила идею асимметричного распределения ближнего света для того, чтобы «пассажирская» обочина освещалась дальше «водительской». И через два года «асимметричный» свет в Европе был узаконен.

Де_формация
На протяжении многих лет фары оставались круглыми - это наиболее простая и дешевая в изготовлении форма параболического отражателя. Но порыв «аэродинамического» ветра сначала «задул» фары в крылья автомобиля (впервые интегрированные фары появились у Pierce-Arrow в 1913 году), а затем превратил круг в прямоугольник (прямоугольными фарами оснащался уже Citroen AMI 6 1961 года). Такие фары были сложнее в производстве, требовали больше подкапотного пространства, но вместе с меньшими вертикальными габаритами имели большую площадь отражателя и увеличенный светопоток.

Чтобы заставить такую фару ярко светить при меньших габаритах, следовало придать параболическому отражателю (в прямоугольных фарах - усеченный параболоид) еще большую глубину. А это было чересчур трудоемко. В общем, привычные оптические схемы для дальнейшего развития не годились. Тогда английская фирма Lucas предложила использовать «гомофокальный» отражатель - комбинацию двух усеченных параболоидов с разными фокусными расстояниями, но с общим фокусом. Одним из первых новинку примерил Austin-Rover Maestro в 1983 году. В том же году фирма Hella представила концептуальную разработку - «трехосные» фары с отражателем эллипсоидной формы (DE, DreiachsEllipsoid). Дело в том, что у эллипсоидного отражателя сразу два фокуса. Лучи, выпущенные галогенной лампой из первого фокуса, собираются во втором, откуда направляются в собирающую линзу. Такой тип фар называют прожекторным. Эффективность «эллипсоидной» фары в режиме ближнего света превосходила «параболическую» на 9% (обычные фары отправляли по назначению лишь 27% света) при диаметре всего в 60 миллиметров. Эти фары предназначались для противотуманного и ближнего света (во втором фокусе размещался экран, создающий асимметричную светотеневую границу). А первым серийным автомобилем с «трехосными» фарами стала «семерка» BMW в конце 1986 года. Еще через два года эллипсоидные фары стали просто супер! Точнее - Super DE, как называла их Hella. На этот раз профиль отражателя отличался от чисто эллипсоидной формы - он был «свободным» (Free Form), рассчитанным таким образом, чтобы основная часть света проходила над экраном, отвечающим за ближний свет. Эффективность фар возросла до 52%.

Дальнейшее развитие отражателей было бы невозможно без математического моделирования - компьютеры позволяют создавать самые сложные комбинированные рефлекторы. Взгляните, к примеру, в «глаза» таких машин, как Daewoo Matiz, Hyundai Getz или «молодая» Газель. Их отражатели поделены на сегменты, каждый из которых имеет свой фокус и фокусное расстояние. Каждая «долька» многофокусного отражателя отвечает за освещение «своего» участка дороги. Свет лампы используется почти полностью - за исключением разве что торца лампы, прикрытого колпачком. А рассеиватель, то есть стекло с множеством «встроенных» линз, теперь не нужен - отражатель сам отлично справляется с распределением света и созданием светотеневой границы. Эффективность таких фар, называемых отражающими, близка к прожекторным.

Современные отражатели «формируют» из термопластика, алюминия, магния и термосета (металлизированного пластика), а накрывают фары не стеклами, а поликарбонатом. Впервые пластиковый рассеиватель появился в 1993 году на седане Opel Omega - это позволило снизить массу фары почти на килограмм! Но зато поликарбонатные «стекла» гораздо хуже сопротивляются истиранию, нежели стекла настоящие. Поэтому щеточных очистителей фар, которые еще в 1971 году предложил Saab, больше не делают…

Предполагается, что официально импортируемые из США автомобили проходят проверку на соответствие европейским нормам. «Американские» фары маркируются аббревиатурой DOT (Department Of Transport, Министерство транспорта), а «европейские» - буквой «Е» в кружочке с цифрой-кодом страны, где фара одобрена для использования (Е1 - Германия, Е2 - Франция, и т.д.).

Следует учесть, что при прохождении техосмотра в России «американские» фары и головная оптика «праворульных» машин могут создать проблемы, так как нормативный документ, ГОСТ Р 51709–2001, регламентирует «левоасимметричное» распределение света и четкую светотеневую границу.
Н1 - D2: ход конем

Автомобильные лампы отличаются, как правило, конструкцией цоколя и светоотдачей. Например, в двухфарных системах чаще всего используются лампы Н4 - с двумя нитями накаливания, для дальнего и для ближнего света. Их световой поток - 1650/1000 лм. В «противотуманках» светят лампы Н8 - однонитевые, со светопотоком в 800 лм. Другие однонитевые лампы Н9 и НВ3 могут обеспечивать только дальний свет (светопоток 2100 и 1860 лм соответственно). А «универсальные» однонитевые лампы Н7 и Н11 могут использоваться и для ближнего, и для дальнего света - в зависимости от того, в каком отражателе они установлены. И как всегда, качество лампы зависит от конкретного производителя, оборудования, концентрации и типов газов (например, лампы Н7 и Н9 иногда заполняют не галогенами, а ксеноном).

У газоразрядного «ксенона» другие обозначения. Первыми ксеноновыми лампами были приборы с индексами D1R и D1S - они были объединены с модулем зажигания. А за индексами D2R и D2S скрываются газоразрядные лампы второго поколения (R - для «отражающей» оптической схемы, S - для прожекторной).

Похожие статьи