Конденсаторы: назначение, устройство, принцип действия. Электрическая емкость – это отношение заряда конденсатора к напряжению на нем Процессы зарядки и разрядки конденсаторов

Задача 3.7. Обкладки плоского воздушного конденсатора площадью S каждая заряжены с поверхностными плотностями зарядов +s и –s. С какой силой они притягиваются?

СТОП! Решите самостоятельно: А17–А19, В10.

Читатель : А как изменится сила взаимодействия между пластинами, если между ними ввести диэлектрик?

Читатель : Почему? Ведь напряженность поля уменьшится в e раз?

Автор : Напряженность уменьшится только в самом диэлектрике. Если между диэлектриком и обкладками есть хотя бы небольшой зазор, то поле в этом зазоре от введения диэлектрика никак не изменится, а значит, не изменится и сила притяжения пластин (рис. 3.5).

Читатель : А если зазор полностью отсутствует? Например, если диэлектрик – жидкость?

Автор : Отсутствие зазора ничего не изменит. В этом случае в пространстве между обкладками просто появятся еще две разноименно заряженные плоскости, образованные поляризационными зарядами (рис. 3.6). Так как заряды этих плоскостей равны по величине и противоположны по знаку, то их суммарное действие на положительно заряженную обкладку равно нулю, следовательно, сила, с которой отрицательная обкладка действует на положительную, не изменится.

Читатель : А если мы введем диэлектрик в конденсатор, подключенный к источнику напряжения?

СТОП! Решите самостоятельно: В11.

Задача 3.8. Обкладки плоского воздушного конденсатора заряжены так, как показано на рис. 3.7. Определить емкость конденсатора и напряженность поля внутри конденсатора. Площадь обкладок S , расстояние между ними d .

Читатель : А напряженность надо искать как суперпозицию полей и .

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от , которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой - станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Как устроен конденсатор

Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

Рисунок 1. Устройство плоского конденсатора

Здесь S - площадь пластин в квадратных метрах, d - расстояние между пластинами в метрах, C - емкость в фарадах, ε - диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или . Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод-лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC - цепочка, показанная на рисунке 2.

Рисунок 2.

На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

Исторический факт

Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки - тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

Немножко о диэлектриках

Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

Наибольшей удельной емкостью (соотношение емкость / объем) обладают . Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

На рисунке 3 показан один из таких конденсаторов.

Рисунок 3. Электролитический конденсатор

Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

Конденсатор может накапливать энергию

Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

Рисунок 4. Схема с конденсатором

Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда - разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

Итак, схема собрана. Как она работает?

В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

Рисунок 5. Процесс заряда конденсатора

На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

Постоянная времени «тау» τ = R*C

В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

Рисунок 6. График разряда конденсатора

Конденсатор не пропускает постоянный ток

Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

Рисунок 7. Схема с конденсатором в цепи постоянного тока

Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

Конденсатор в фильтрах питания

Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

Рисунок 8. Схемы выпрямителей

Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

C = 1000000 * Po / U*f*dU,

а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

Суперконденсатор - ионистор

В последнее время появился новый класс электролитических конденсаторов, так называемый . По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе - изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье - .

Один из самых распространённых электронных элементов – конденсатор. В разговоре такие элементы называют «ёмкость». Простейшая конструкция для изготовления и расчетов – плоский конденсатор.

Что такое плоский конденсатор

Это понятие относится к конструкции, состоящей из двух пластин, параллельных друг другу. Расстояние между ними должно быть во много раз больше размеров самих пластин. В этом случае краевыми эффектами можно пренебречь. В противном случае эти эффекты приобретают большое значение, а формулы для расчета ёмкости становятся слишком сложными.

Важно! Другое название этих пластин – обкладки.

Каждый из электродов создаёт вокруг себя электрическое поле одинаковой величины и противоположной направленности: в обкладке, заряженной положительно, q+, а в отрицательной – q-.

В плоском конденсаторе электрическое поле находится между обкладками и является однородным. Напряжённость его рассчитывается по формуле:

E∑=qεε0*S, где:

  • q − заряд электродов;
  • S − площадь обкладок;
  • ε − диэлектрическая проницаемость материала между ними – параметр, определяющий, во сколько раз сильнее влияние зарядов друг на друга, чем в вакууме;
  • Фмε0=8,85*10−12 Ф/м − электрическая постоянная.

От чего зависит электроемкость конденсатора

Для расчета ёмкости применяется формула:

C=ε*ε0*Sd, где:

  • S − площадь обкладок;
  • d − расстояние между ними;
  • Фмε0=8,85*10−12 Ф/м − электрическая постоянная;
  • ε − диэлектрическая проницаемость изоляционного материала, находящегося между электродами.

Таким образом, ёмкость зависит от площади обкладок, расстояния между ними и диэлектрической проницаемости изоляционного материала.

Для уменьшения габаритов «сэндвич» из плоских электродов с изолятором между ними сворачивается в рулон. При условии, что толщина изолятора во много раз меньше радиуса цилиндра, последним можно пренебречь.

Ещё один путь увеличения ёмкости – уменьшение расстояния между обкладками, при этом падает электрическая прочность – напряжение, при котором происходит пробой конденсатора, и он выходит из строя.

Интересно. В новом типе конденсаторов – ионисторах в качестве обкладок используется активированный уголь или графен, пористая структура которых позволяет многократно увеличить ёмкость элементов (до нескольких фарад).

Заряд и разряд конденсаторов

Носителями заряда в металлах являются свободные электроны. При подключении устройства к источнику напряжения: батарейке, аккумулятору или сети, электроны из обкладки, подключённой к положительному полюсу батареи, устремятся в источник питания, и обкладка зарядится положительно. В обкладку, подключённую к отрицательному полюсу, начнут поступать электроны. Этот процесс изображён на рисунке ниже.

При этом растёт напряжённость электрического поля в устройстве между электродами и напряжение на устройстве. Этот процесс закончится, когда напряжение между выводами элемента станет равным напряжению сети. При этом внутри него будет запасено некоторое количество энергии, которое рассчитывается по формуле:

E = (U²* C)/2, где:

  • E – энергия (Дж);
  • U – напряжение (В);
  • C – ёмкость (мкФ).

При подключении аппарата в цепь нагрузки избыточные электроны из отрицательного вывода через нагрузку начнут поступать в положительный вывод. Это движение закончится при уравнивании потенциалов между выводами.

Этот процесс не может произойти мгновенно, что позволяет использовать конденсаторы в качестве фильтра, сглаживающего пульсации напряжения в сети.

Важно! Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь.

Расчёт ёмкости плоских конденсаторов

Ёмкость идеального устройства, в котором между пластинами находится воздух, можно вычислить по формуле:

Cо=Q/U, где:

  • Cо – ёмкость;
  • Q – заряд на одном из пластин устройства;
  • U – разность потенциалов или напряжение между выводами.

Этот параметр зависит только от напряжения и накопленного заряда, но они меняются при изменениях расстояния между обкладками и типа диэлектрика между ними. Это учтено в формуле:

С=Co*ε, где:

  • С – реальная ёмкость;
  • Со – идеальная;
  • ε – диэлектрическая проницаемость изоляционного материала.

Единица ёмкости – 1 фарад (1Ф, 1F). Есть также меньшие величины:

  • Микрофарады (1мкФ, 1mkF). 1000000mkF=1F;
  • Пикофарады (1пФ, 1pF). 1000000pF=1mkF.

Допустимое напряжение

Кроме ёмкости, важный параметр, влияющий на применение элемента и его габариты, – допустимое напряжение. Это величина разности потенциалов на выводах устройства, при превышении которой произойдёт электрический пробой диэлектрика между обкладками, короткое замыкание внутри конструкции и выход её из строя.

При отсутствии элемента с необходимыми параметрами можно соединить вместе имеющиеся приборы.

Есть три вида соединений: последовательное, параллельное и смешанное, являющееся комбинацией параллельного и последовательного.

Расчёт последовательного соединения

При этом виде соединения заряды на всех обкладках одинаковы:

Это происходит потому, что напряжение источника питания подаётся только на внешние вывода крайних элементов. При этом происходит перенос заряда с одного электрода на другой.

Напряжение при этом распределяется обратно пропорционально ёмкости:

U1 = Q/C1, U2 = Q/C2,…,Un=Q/Cn.

Итоговое напряжение равно напряжению сети:

Uсет=U1+U2+…+Un.

Эквивалентная ёмкость определяется по формулам:

  • С=Q/U=Q/(U1+U2+…+Un),
  • С=1/С1+1/С2+…+1/Cn,
  • или сложением проводимостей.

Справка. Проводимость – это величина, обратная сопротивлению.

Расчёт параллельного соединения

При параллельном соединении обкладки элементов попарно соединяются между собой. Напряжение на всех устройствах равно между собой, а заряды отличаются в зависимости от ёмкости:

Q1=C1U, Q2=C2U,…Qn=CnU.

Общий заряд системы равен общей сумме на всех элементах:

а общая ёмкость равна общей для всех устройств:

C=Q/U=(Q1+Q2+…+Qn)/U=C1+C2+…Cn.

Как проверить емкость конденсатора

При отсутствии маркировки на корпусе устройства или сомнении в его исправности определение емкости конденсатора производится мультиметром, у которого есть соответствующие функции, или обычным вольтметром и амперметром.

Проверка путём измерения времени зарядки

При подключении ёмкостного элемента к сети постоянного тока через сопротивление напряжение на его выводах растёт по экспоненциальному графику и за период времени 3R*C станет равным 95% U сети.

Соответственно, зная номинал резистора, параметры конденсатора определяются по формуле:

Номинал резистора зависит от ожидаемых параметров измеряемого элемента и определяется опытным путём.

Важно! Этим способом можно определить емкость конденсатора от 0,25мкФ и выше.

Измерение ёмкостного сопротивления

Кроме определения времени заряда, можно узнать ёмкостное сопротивление. Оно зависит от частоты напряжения на выводах прибора:

Xc=1/2*π*f*C, где:

  • Xc – ёмкостное сопротивление;
  • π – число «пи» (3,14);
  • f – частота сети (в розетке 50Гц);
  • С – ёмкость конденсатора.

Подключив конденсатор к сети, определить Хс можно двумя способами:

  • зная напряжение сети и ток, текущий в ней по закону Ома:
  • подключить последовательно с измеряемым элементом резистор 10 кОм, измерить напряжение на всех деталях, и по формуле Xc=(Ur*Uc)/R определяется ёмкостное сопротивление.

Проверка исправности тестером

Если необходимо проверить исправность электронного прибора, но нет возможности производить длительные измерения, то это можно сделать тестером или светодиодной прозвонкой. Для этого необходимо подключить тестер к выводам. На исправном устройстве во время зарядки тестер покажет цепь, а после её завершения – обрыв. При изменении полярности время заряда увеличивается вдвое.

Знание того, как рассчитывается и проверяется ёмкость плоского конденсатора, необходимо при проектировании и ремонте электроприборов и электронной техники.

Видео

Плоским конденсатором называется электродная система из двух параллельных пластин, называемых обкладками конденсатора. Расстояние между обкладками обычно значительно меньше их длины и ширины. При таких условиях почти все заряды оказываются практически равномерно распределенными по внутренним поверхностям обкладок. В пространстве между обкладками вдали от краев поле однородно, т.е. вектор напряженности поля Е постоянен и направлен по нормали к поверхности обкладок. Силовые линии поля представляют собой прямые линии, параллельные нормали. Для описания такой электродной системы применим декартову систему координат с осью х , параллельной нормали к поверхности, и началом координат, расположенным в центре конденсатора на середине расстояния между пластинами. Используя определение электрического смещения (1.22)-(1.23), можно записать:

, (2.23)

где s=Q /S – поверхностная плотность заряда на обкладках, которая является постоянной величиной вдали от краев обкладок. К задаче подходят фундаментальные решения уравнения Лапласа (2.1). Сравнивая выражения (2.1) и (2.23) определяем постоянную интегрирования С 1:

И (2.24)

Пусть потенциал j = 0 по центру между обкладками конденсатора при х = 0. Тогда С 2 = 0. Напряжение между обкладками конденсатора равно:

, откуда и (2.25)

Эквипотенциальные поверхности представляют собой плоскости, параллельные обкладкам (x = const). При графическом изображении поля плоского конденсатора расстояние между эквипотенциальными поверхностями должно быть одинаково для того, чтобы потенциалы отличались на одну и ту же величину. Заряд конденсатора Q = s×S , где S - площадь обкладки. Емкость конденсатора равна

Систему проводников очень боль­шой электроемкости вы можете об­наружить в любом радиоприемнике или купить в магазине. Называется она конденсатором. Сейчас вы узна­ете, как устроены подобные системы и от чего зависит их электроемкость.

Конденсатор. Большой электро­емкостью обладают системы из двух проводников, называемые кон­денсаторами. Конденсатор представ­ляет собой два проводника, разде­ленные слоем диэлектрика, толщина которого мала по сравнению с раз­мерами проводников. Проводники в этом случае называются обкладками конденсатора.

Простейший плоский конденсатор состоит из двух одинаковых парал­лельных пластин, находящихся на малом расстоянии друг от друга (рис. 1). Если заряды пластин одинаковы по модулю и противо­положны по знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на от­рицательно заряженной. Поэтому почти все электрическое по­ле сосредоточено внутри конден­сатора.

У сферического конденсатора, со­стоящего из двух концентрических сфер, все поле сосредоточено между ними.

Для зарядки конденсатора нужно присоединить его обкладки к полю­сам источника напряжения, напри­мер к полюсам батареи аккумуля­торов. Можно также соединить одну обкладку с полюсом батареи, у которой другой полюс заземлен, а вто­рую обкладку конденсатора зазем­лить. Тогда на заземленной об­кладке останется заряд, противопо­ложный по знаку и равный по мо­дулю заряду другой обкладки. Такой же по модулю заряд уйдет в землю.

Под зарядом конденсатора пони­мают абсолютное значение заряда одной из обкладок.

Электроемкость конденсатора определяется формулой.

Электрические поля окружающих тел почти не проникают внутрь кон­денсатора и не влияют.на разность потенциалов между его обкладками. Поэтому электроемкость конденса­тора практически не зависит от на­личия вблизи него каких-либо дру­гих тел.

Первый конденсатор, названный лейденской банкой, был создан в середине XVIII в. Было обнаружено, что гвоздь, вставленный в стеклян­ную банку с ртутью, накапливает большой электрический заряд. В та­ком конденсаторе ртуть служила од­ной обкладкой, а ладони экспериментатора, держащего банку,- дру­гой. Впоследствии обе обкладки ста­ли делать из тонкой латуни или станиоля.

Электроемкость плоского кон­денсатора. Геометрия плоского кон­денсатора полностью определяется площадью S его пластин и рас­стоянием d между пластинами. От этих величин и должна зависеть ем­кость плоского конденсатора. Чем больше площадь пластин, тем боль­ший заряд можно на них нако­пить: q~S. С другой стороны, на­пряжение между пластинами соглас­но формуле пропорционально расстоянию между ними. Поэтому емкость

Похожие статьи