Механическими методами выделения аэробов являются. Чашечный метод коха

Культивирование микроорганизмов, помимо состава питательной сре-ды, зависит от физических и химических факторов (температура, кислотность, аэрация, свет и т. д.). При этом количественные показатели каждого из них неодинаковы и определяются особенностями метаболиз-ма каждой группы бактерий. Существуют методы культивирования мик-роорганизмов на твердых и в жидких питательных средах в аэробных, анаэробных и других условиях.

Методы выделения чистых культур аэробных микроорганизмов. Для того, чтобы получить изолированные колонии, при нанесении материал распределяют так, чтобы клетки бактерий были удалены друг от друга. Для получения чистой культуры используют две основные группы методов:

а) мето-ды, основанные на принципе механического разделения микроорганизмов;

б) методы, основанные на биологиче-ских свойствах микроорганизмов.

Методы, основанные на принципе механического разде-ления микроорганизмов

Рассев шпателем по Дригальскому . Берут 3 чашки Петри с питательной средой. На 1-ю чашку петлей или пипеткой наносят кап-лю исследуемого материала и растирают шпателем по всей поверхности питательного агара. Затем шпатель пе-реносят во 2-ю чашку и втирают оставшуюся на шпателе культуру в поверхность питательной среды. Далее шпа-тель переносят в 3-ю чашку и аналогичным образом про-изводят посев. На 1-й чашке вырастает максимальное количество колоний, на 3-й - минимальное. В зависимо-сти от содержания микробных клеток в исследуемом ма-териале на одной из чашек вырастают отдельные коло-нии, пригодные для выделения чистой культуры микро-организма.

Метод Пастера (метод разведений). Из исследуемого материала готовят ряд последовательных, чаще десятикратных серийных разведений в жидкой стерильной среде или физиологическом растворе в пробирках. Далее высевают материал газоном по 0,5 мл из каждой пробирки. Предполагают, что в какой-то из пробирок останется количество микроорганизмов, поддающихся подсчету при высеве на пластинчатые среды. Этот метод дает возможность подсчитать микробное число в исследуемом материале. (Микробное число — количество колоний на последней чашке с ростом микроорганизмов, умноженное на степень разведения материала).

Рассев петлей (посев штрихами). Берут одну чашку Петри с питательным агаром и делят ее на 4 сектора, проводя разграничительные линии на внешней стороне дна чашки. Исследуемый ма-териал петлей вносят в первый сектор и проводят ею па-раллельные линии по всему сектору на расстоянии одна от другой около 5 мм. Этой же петлей, не изменяя ее положения по отношению к агару, проводят такие же линии на других секторах чашки. В том месте, где на агар попало большое количество микробных клеток, рост микроорганизмов будет в виде сплошного штриха. На секторах с небольшим количеством клеток вырастают отдельные колонии. Кроме того, можно наливать разведен-ные растворы смешанной культуры на поверхность твер-дых сред в чашках.

Метод фильтрации. Основан на пропускании исследуемого материала через специальные фильтры с определенным диаметром пор и разделении содержа-щихся микроорганизмов по величине. Этот метод при-меняется главным образом для очистки вирусов от бак-терий, а также при получении фагов и токсинов (в фильтрате — чистый фаг, очищенный токсин).

Методы, основанные на биологических свойствах мик-роорганизмов

Создание оптимальных условий для размножения

  • Создание оптимального температурного режима для избирательного подавления размножения сопутствующей микрофлоры при низкой температуре и получения культур психрофильных или термофильных бактерий. Большинство микробов неплохо развиваются при 35-37°С, иерсинии хорошо растут при 22°С, лептоспиры культивируют при 30°С. Термофильные бактерии растут при температурах, лежащих за пределами температурных режимов прочих сопутствующих видов бактерий (так, кампилобактер культивируют при 42°С).
  • Создание условий для аэробиоза или анаэробиоза. Большинство микроорганизмов хорошо растут в присутствии атмосферного кислорода. Облигатные анаэробы растут в условиях, исключающих присутствие атмосферного кислорода (возбудители столбняка, ботулизма, бифидумбактерии, бактероиды и др.). Микроаэрофильные микроорганизмы растут только при низком содержании кислорода и повышенном содержании СО2 (кампилобактер, геликобактер).
  • Метод обогащения. Исследуемый материал за-севают на элективные питательные среды, способствую-щие росту определенного вида микроорганизмов.

Методы выделения чистых культур микроорганизмов

Метод Пастера (метод предельных разведений). Заключается в том, что из исследуемого материала делают ряд последовательных разведений в жидкой питательной среде. Для этого каплю посевного материала вносят в пробирку со стерильной жидкой средой, из нее каплю переносят в следующую пробирку и так засевают до 8…10 пробирок. С каждым разведением количество микробных клеток, попадающих в среду, будет уменьшаться и можно получить такое разведение, в котором во всей пробирке со средой будет находиться только одна микробная клетка, из которой разовьется чистая культура микроорганизма.

Так как в жидких средах микробы растут диффузно, т.е. легко распределяются во всей среде, то изолировать одну микробную клетку от другой трудно. Таким образом, метод Пастера не всегда обеспечивает получение чистой культуры. Поэтому в настоящее время этот метод используется, главным образом, для предварительного уменьшения концентрации микроорганизмов в материале перед посевом его в плотную среду для получения изолированных колоний.

Методы механического разделения микроорганизмов с использованием плотных питательных сред. К таким методам относятся метод Коха и метод Дригальского.

Метод Коха (метод глубинного посева).

Исследуемый материал вносят бактериологической петлей или пастеровской пипеткой в пробирку с расплавленной плотной питательной средой. Равномерно размешивают содержимое пробирки, вращая ее между ладонями. Каплю разведенного материала переносят во вторую пробирку, из второй – в третью и т.д. Содержимое каждой пробирки, начиная с первой, выливают в стерильные чашки Петри. После застывания среды в чашках, их помещают в термостат для культивирования.

Для выделения анаэробных микроорганизмов по методу Коха необходимо ограничить доступ кислорода к культуре.

С этой целью поверхность глубинного посева в чашке Петри заливают стерильной смесью парафина и вазелина (1:1). Можно также оставлять посевной материал, тщательно перемешанный с агаризованной средой, непосредственно в пробирке.

Ватную пробку при этом заменяют резиновой или заливают поверхность агара смесью парафина и вазелинового масла. Чтобы извлечь выросшие колонии анаэробных микроорганизмов, пробирки слегка нагревают, быстро вращая над пламенем горелки. Агар, прилегающий к стенкам, расплавляется, и столбик легко выскальзывает в подготовленную чашку Петри. Далее столбик с агаром разрезают стерильным скальпелем, колонии извлекают стерильной петлей или стерильной капиллярной рубкой и переносят в жидкую среду.

Метод Дригальского основан на механическом разделении микробных клеток на поверхности плотной питательной среды в чашках Петри.

Каждая микробная клетка, фиксируясь в определенном месте, начинает размножаться, образуя колонию.

Для посева по методу Дригальского используют несколько чашек Петри, залитых плотной питательной средой.

На поверхность среды вносят каплю исследуемого материала.

Затем с помощью стерильного шпателя эту каплю распределяют по всей питательной среде (посев газоном).

Посев также можно проводить штрихом, используя бактериологическую петлю. Этим же шпателем или петлей осуществляют посев во вторую, третью и т.д. чашки. Как правило, в первой чашке после культивирования посева появляется рост микробов в виде сплошного налета, в последующих чашках содержание микроорганизмов снижается и образуются изолированные колонии, из которых отсевом можно легко выделить чистую культуру.

Таким образом, в первых секторах получается сплошной рост, а вдоль последующих штрихов вырастут обособленные колонии, представляющие собой потомство одной клетки.

В целях экономии сред и посуды можно пользоваться одной чашкой, разделив ее на сектора, и последовательно засевать их штрихом (метод истощающего штриха).

Для этого материал берут петлей и проводят ею ряд параллельных штрихов сначала по поверхности первого сектора, а затем последовательно оставшимися на петле клетками засевают все другие сектора.

При каждом последующем штрихе происходит уменьшение количества засеваемых клеток.

Метод выделения чистых культур с помощью химических веществ используется при изолировании культур микроорганизмов, устойчивых к определенным химическим веществам.

Например, с помощью этого метода можно выделить чистую культуру туберкулезных микобактерий, устойчивых к действию кислот, щелочей и спирта. В этом случае исследуемый материал перед посевом заливают 15 % раствором кислоты или антиформином и выдерживают в термостате в течение 3…4 часов.

После воздействия кислоты или щелочи клетки туберкулезной палочки остаются живыми, а все другие микроорганизмы, содержащиеся в исследуемом материале, погибают. После нейтрализации кислоты или щелочи обработанный материал высевают на плотную среду и получают изолированные колонии возбудителя туберкулеза.

Биологические методы выделения чистых культур патогенных микроорганизмов основаны на заражении исследуемым материалом лабораторных животных, восприимчивых к данному виду возбудителя.

Если патогенный микроорганизм содержится в исследуемом объекте, то лабораторное животное заболевает и погибает. После вскрытия павшего животного из внутренних органов делают посевы на специальные среды, на которых вырастают чистые культуры выделяемых микробов.

Предыдущая567891011121314151617181920Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Выделение чистой культуры бактерий

Чистой называют культуру, содержащую микроорганизмы одного вида и полученную как потомство одной клетки. Чистые культуры можно получить из исходной микробной клетки, изолиро-ванной при помощи микроманипулятора, или из изолированных колоний путем их пересева в отдельные пробирки с питательной средой.

Для выделения чистой культуры используют следующие методы.

1. Метод Дригалъского. При этом методе расплавленную питательную среду разливают в 3 чашки Петри. В первую чашку вносят одну каплю исследуемого материала и сте-рильным шпателем распределяют его по поверхности питательной среды. Затем шпатель переносят во вторую и далее в третью чашки, втирая в поверхность питательных сред оставшийся на нем материал.

При посеве этим методом на второй и на третьей чашках вырастают изолированные колонии. Полученные отдельные колонии пересевают в пробирки с питательной средой для получения чистой культуры микроорганизма.

2. Метод параллельных штрихов. При этом способе материал с помощью бактериологической петли распределяют по поверхности агара параллельными штрихами в одном направлении.

Затем, повернув чашку на 90°, проводят штрихи в направлении, перпендикулярном первым штрихам. При таком способе посева материал, находящийся в петле, расходу-ется постепенно, и по линиям штрихов, нанесенных в конце посева, вырастают изолированные колонии микробов.

3. Метод Коха (метод рассева в глубине среды). При этом методе в пробирку с агаром, расплавленным и остуженным до 43-45°С, вносят одну бактериологическую петлю исследуемого материала и тщательно перемешивают.

После этого из этой пробирки одну петлю материала переносят во вторую пробирку, а затем из нее – в третью пробирку. Приготовленные разведения бактерий выливают из пробирок в стериль-ные чашки Петри. После застывания среды чашки помещают в термостат. Количество колоний в чашках с питательной средой уменьшается по мере разведения материала.

Контрольные вопросы по теме занятия:

1. Характер роста бактерий в жидких, на полужидких и плотных питательных средах.

Характеристика колоний микроорганизмов.

3. Пигменты бактерий и их роль для микроорганизмов.

4. методы выделения чистых культур бактерий.

Литература для подготовки к занятию:

Основная литература:

1. Медицинская микробиология, вирусология и иммунология. Под ред. А.А.

Воробьева. М., 2004.

Дополнительная литература:

1. Л.Б. Борисов. Медицинская микробиология, вирусология, иммунология. М., 2002.

2. О.К. Поздеев. Медицинская микробиология.

М., ГЭОТАР-МЕДИА, 2005.

3. Медицинская микробиология. Справочник. Под ред. В.И. Покровского и О.К. Поздеева. М., ГЭОТАР-МЕД, 1998.

ЗАНЯТИЕ 5

ТЕМА ЗАНЯТИЯ : Ферменты бактерий. Изучение ферментативной активности микроорганизмов. Дыхание бактерий. Методы культивирования и выделения чистой культуры анаэробов.

УЧЕБНАЯ ЦЕЛЬ ЗАНЯТИЯ : Ознакомиться с ферментами бактерий.

Изучить методы определения ферментативной активности микроорганизмов. Ознакомиться с процессами дыхания бактерий. Изучить методы культивирования и выделения чистой культуры анаэробов.

ЗАДАЧИ ЗАНЯТИЯ :

1. Ознакомиться с ферментами бактерий.

Изучить методы определения ферментативной активности микроорганизмов.

3. Ознакомиться с процессами дыхания бактерий.

4. Изучить методы культивирования и выделения чистой культуры анаэробов.

Ферменты бактерий

Все биохимические процессы в клетке микро-организмов, связанные с метаболизмом, ростом и размножением, совершаются при участии ферментов (энзимов).

Ферменты синтезируются самой микробной клеткой, и имеют сложное строение. Они представляют собой либо только белок с высокой молекулярной массой (трипсин, пепсин и др.), либо состоят из белка (апофермента), связанного с кофактором (коферментом). Кофермент может быть низкомолекулярным неорганическим (металл) или органическим ве-ществом.

Классификация ферментов основана на типах реакций, которые они катализируют.

Все ферменты делятся на шесть классов:

1). Оксидоредуктазы — ферменты переноса электронов. Эти ферменты катализируют окис-лительно-восстановительные реакции. К ним отно-сятся дегидрогеназы (НАД, НАДФ, ФАД), каталаза, цитохромы.

Трансферазы — ферменты переноса групп между молекулами от одних соединений к другим. К ним относятся ацетилтрансфераза, фосфотрансфераза, аминотрансфераза.

3). Гидролазы — ферменты переноса функциональных групп с участием воды. К этому классу ферментов относятся пептидгидролазы, глюкозидаза, амилазы, эстеразы, липаза, фосфатаза.

4). Лиазы — ферменты, отщепляющие или присоединяющие без участия воды различные соединения с двойной связью.

К этим ферментам относятся пируватдекарбоксилаза, альдолаза.

5). Изомеразы — ферменты, переносящие группы внутри молекул с образованием изомерных форм. К этим ферментам относятся триизофосфатизомераза, глюкозофосфатизомераза.

Лигазы (синтетазы) — ферменты, объединяющие две молекулы с одновременным разрывом фосфатных связей с использованием энергии АТФ. К лигазам относятся ферменты, катализирующие синтез сложных органических веществ из простых соединений (аспарагинсинтетаза, кокарбоксилазы).

Активность ферментов измеряют в международных еди-ницах (ME). 1 ME соответствует количеству ферментов, пре-вращающему один микромоль субстрата в 1 минуту в стандарт-ных условиях.

У бактерий различают эндоферменты и экзоферменты.

Эндоферменты находятся внутри бактериальной клетки, катализиру-ют внутриклеточные процессы обмена веществ. Экзоферменты выделяются во вне-шнюю среду и выполняют функцию расщепления сложных питательных веществ.

Ферменты агрессии. У патогенных бактерий имеется особая группа экзоферментов, которые называются ферментами агрессии . Они выполняют функции облегчения проникновения и распространения бактерий в тканях организма хозяина и ослабления его защитных свойств.

К ферментам агрессии относятся: гиалуронидаза, нейраминидаза, коллагеназа, протеазы, фибринолизин, гемолизин, лейкоцидин.

Конститутивные и индуцибельные ферменты. Ферменты, которые синтезируются клеткой с постоянной скоростью, независимо от наличия субстрата в среде называются конститутивными . Индуцибельные (адаптивные) ферменты образуются только в присутствии соответствующего субстрата в сре-де.

Например, фермент бета-галактозидаза начинает синтезироваться только при добавлении в питательную среду углевода лактозы, которую этот фермент расщепляет с образованием глюкозы и галактозы.

Методы определения ферментативной активности микробов

Обязательным условием идентификации выделенной чистой культуры бактерий является определение ферментативной активности в отношении углеводов и белков (биохимический «паспорт» вида).

Для выявления ферментов, расщепляющих углеводы (сахаролитические ферменты) используют дифференциально-диагностические среды Гисса.

В состав сред Гисса входит пептонная вода, индикатор рН, поплавок для улавливания газа и один из углеводов (глюкоза, лактоза, мальтоза, маннит, сахароза, крахмал и т.д.). Если бактерии расщепляют углевод, то образуется кислота и при этом меняется цвет среды за счет находящегося в ней индикатора рН. Большинство патогенных бактерий расщепляют углеводы с образованием только кислоты; некоторые виды ферментируют углеводы с образование кислоты и газа (СО2).

При этом меняется цвет среды и в поплавке появляется пузырек газа.

Протеолитическая активность бактерий. Показателями глубокого расщепления белка является образование индола, аммиака, сероводорода. Для выявления этих газообразных веществ делают посевы чистой культуры бактерий на мясо-пептонный бульон или пептонную воду в пробирки со специальными бумажными индикаторами.

При наличии продуктов расщепления меняется цвет соответствующего индикатора.

Протеолитическую активность бактерий определяют также путем посева чистой культуры уколом в столбик желатина по наличию и характеру разжижения среды, например, в виде перевернутой елочки, гвоздя, воронки и т.д.

Энергетический метаболизм

Это совокупность биохимических реакций, результатом которых является образование (накопление энергии) и расщепление (расход энергии) макроэргических связей в молекулах АТФ.

У бактерий АТФ может синтезироваться в результате процессов брожения и дыхания.

Брожение. Более древний, низкоэффективный способ получения энергии, при котором в результате расщепления молекулы глюкозы образуется 2 молекулы АТФ. Конечными продуктами брожения являются СО2, вода, спирты и органические кислоты.

Процесс происходит без участия кислорода.

Дыханием называют процесс окислительного фосфорилирования углеводов с образованием молекул АТФ, СО2 и воды. При распаде одной молекулы глюкозы высвобождаются 12 электронов, которые проходят через цепь дыхательных ферментов, отдавая энергию для синтеза 36 молекул АТФ. Освобождение дыхательной цепи от электронов осуществляют вещества, называемые акцепторами электронов .

К таким веществам относится кислород, сульфаты, нитраты, карбонаты. Если конечным акцептором электронов служит мо-лекулярный кислород, дыхание называют аэробным . В случае конечной акцепции электронов другими соединениями дыхание называют анаэробным .

По типу дыхания бактерии классифицируют на че-тыре основные группы:

1. Облигатные (строгие) аэробы растут при свободном доступе кислорода (возбудитель ту-беркулеза).

Микроаэрофилы растут при низкой (до 1%) концентрации кислорода и повышенной концентрации углекислого газа (гемофильная палочка).

Факультативные анаэробы могут расти как в присутствии кислорода, так и в анаэробных условиях (кишечная палочка).

4. Облигатные (строгие) анаэробы могут расти только при пол-ном отсутствии кислорода в окружающей среде (возбудители столбняка, ботулизма, газовой гангрены).

Читайте также:

Выделение чистых культур микроорганизмов

Чистой культурой называют такую культуру, которая содержит микроорганизмы одного вида. Выделение чистых культур бактерий – обязательный этап бактериологического исследования в лабораторной диагностике инфекционных болезней, в изучении микробной загрязненности различных объектов окружающей среды, и, в целом, при любой работе с микроорганизмами.

Исследуемый материал (гной, мокрота, фекалии, кровь и другой материал от больных; вода, почва, воздух, пищевые продукты, трупы животных и человека, переносчики) обычно содержит ассоциации микробов.

Выделение чистой культуры позволяет изучить морфологические, культуральные, биохимические, антигенные и другие признаки, по совокупности которых определяется видовая и типовая принадлежность возбудителя, то есть производится его идентификация.

Для выделения чистых культур микроорганизмов используют методы, которые можно разделить на несколько групп.

Метод Пастера – последовательное разведение исследуемого материала в жидкой питательной среде до концентрации одной клетки в объеме (имеет историческое значение).

2. Метод Коха («пластинчатые разводки») – последовательное разведение исследуемого материала в расплавленном агаре (температура 48-500С), с последующим разливом в чашки Петри, где агар застывает.

Высевы делают, как правило, из трех-четырех последних разведений, где бактерий становится мало и, в дальнейшем, при росте на чашках Петри появляются изолированные колонии, образующиеся из одной исходной материнской клетки. Из изолированных колоний в глубине агара получают чистую культуру бактерий пересевом на свежие среды.

Метод Шукевича – применяется для получения чистой культуры протея и других микроорганизмов обладающих «ползущим» ростом. Посев исследуемого материала производят в конденсационную воду у основания скошенного агара. Подвижные микробы (протей) способны подниматься вверх по скошенному агару, неподвижные формы остаются расти внизу на месте посева.

Пересевая верхние края культуры можно получить чистую культуру.

4. Метод Дригальского – широко применяется в бактериологической практике, при этом исследуемый материал разводят в пробирке стерильным физиологическим раствором или бульоном.

Одну каплю материала вносят в первую чашку и стерильным стеклянным шпателем распределяют по поверхности среды. Затем этим же шпателем (не прожигая его в пламени горелки) делают такой же посев во второй и третьей чашках. С каждым посевом бактерий на шпателе остается все меньше и меньше и, при посеве на третью чашку, бактерии будут распределяться по поверхности питательной среды отдельно друг от друга.

Через 1-7 сут выдерживания чашек в термостате (в зависимости от скорости роста микроорганизмов) на третьей чашке каждая бактерия дает клон клеток, образуя изолированную колонию, которую пересевают на скошенный агар с целью накопления чистой культуры.

5. Метод Вейнберга. Особые трудности возникают при выделении чистых культур облигатных анаэробов.

Если контакт с молекулярным кислородом не вызывает сразу же гибели клеток, то посев производят по методу Дригальского, но после этого чашки сразу помещают в анаэростат. Однако чаще пользуются методом разведения. Сущность его заключается в том, что разведения исследуемого материала проводят в расплавленной и охлажденной до 45-500С агаризированной питательной среде. Делают 6-10 последовательных разведений, затем среду в пробирках быстро охлаждают и заливают поверхность слоем смеси парафина и вазелинового масла, чтобы помешать проникновению воздуха в толщу питательной среды.

Иногда питательную среду после посева и перемешивания переносят в стерильные трубки Бурри или капиллярные пипетки Пастера, концы которых запаивают. При удачном разведении в пробирках, трубках Бурри, пипетках Пастера вырастают изолированные колонии анаэробов.

Чтобы изолированные колонии хорошо были видны, используют осветленные питательные среды. Для извлечения изолированных колоний анаэробов, пробирку слегка нагревают, вращая ее над пламенем, при этом агар, прилегающий к стенкам, плавится и содержимое пробирки в виде агарового столбика выскальзывает в стерильную чашку Петри.

Столбик агара разрезают стерильным пинцетом и извлекают колонии петлей. Извлеченные колонии помещают в жидкую среду, благоприятную для развития выделяемых микроорганизмов (например, среду Китта-Тароцци). Агаризированную среду из трубки Бурри выдувают, пропуская газ через ватную пробку.

6. Метод Хангейта – когда хотят получить изолированные колонии бактерий с особенно высокой чувствительностью к кислороду (строгие аэробы) используют метод вращающихся пробирок Хангейта.

Для этого расплавленную агаризированную среду засевают бактериями при постоянном токе через пробирку инертного газа, освобожденного от примеси кислорода. Затем пробирку закрывают резиновой пробкой и помещают горизонтально в зажим, вращающий пробирку, среда при этом равномерно распределяется по стенкам пробирки и застывает тонким слоем. Применение тонкого слоя в пробирке, заполненной газовой смесью, позволяет получить изолированные колонии, хорошо видимые невооруженным глазом.

Выделение отдельных клеток с помощью микроманипулятора . Микроманипулятор – прибор, позволяющий с помощью специальной микропипетки или микропетли извлекать одну клетку из суспензии. Эту операцию контролируют под микроскопом. На предметном столике микроскопа устанавливают влажную камеру, в которую помещают препарат «висячая капля».

В держателях операционных штативов закрепляют микропипетки (микропетли), перемещение которых в поле зрения микроскопа осуществляется с микронной точностью благодаря системе винтов и рычагов.

Исследователь, глядя в микроскоп, извлекает отдельные клетки микропипетками и переносит их в пробирки со стерильной жидкой средой для получения клона клеток.

Предыдущая17181920212223242526272829303132Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Методы выделения чистых культур аэробных бактерий

а) Метод Пастера – имеет историческое значение, предусматривает последовательное разведение исследуемого материала в жидкой питательной среде методом переката

б) Метод Коха – метод пластинчатых разводок – основан на последовательном разведении исследуемого материала мясо-пептонным агаром с последующей разливкой пробирок с разведенным материалом в чашки Петри

в) Метод Дригальского – при посеве материала, обильно обсемененного микрофлорой, используют 2–3 чашки для последовательного посева шпателем.

г) Посев петлей параллельными штрихами .

Биологические методы основаны на биологических свойствах возбудителей.

а) Биологический – заражение высокочувствительных животных, где микробы быстро размножаются и накапливаются.

В одних случаях, этот метод является единственным, позволяющим вы-делить культуру возбудителя от больного человека (например, при туляремии),в других случаях – он более чувствителен (например, выделение пневмококка на белых мышах или воз-будителя туберкулеза на морских свинках).

б) Химический – основан на кислотоустойчивости микобактерий. Для освобождения материала от сопутствующей флоры, его
обрабатывают раствором кислоты.

Вырастут только туберкулезные палочки, так как кислотоподатливые микробы погибли под действием кислоты.

в) Физический метод основан на устойчивости спор к нагреванию. Для выделения культуры спорообразующих бактерий из
смеси материал прогревают при 80°С и засевают на питательную среду. Вырастут только споровые бактерии, так как споры их остались живыми и дали рост.

г) Метод Щукевича – основан на высокой подвижности вуль-гарного протея, способного давать ползучий рост.

Методика пересева из колоний на скошенный агар и МПБ:

а) Пересев из колоний на скошенный агар

Приоткрывают крышку чашки, прокаленной остуженной петлей снимают часть отдельной колонии, открывают пробирку со стерильным скошенным агаром, держа ее в левой руке в наклонном положении, так, чтобы можно было наблюдать поверхность среды.

Переносят петлю с культурой в пробирку, не прикасаясь к стенкам, растирают по питательной среде, скользя по поверхности от одного края пробирки к другому, поднимая штрихи до верхушки среды – посев штрихом. Пробирку закрывают и, не выпуская из рук, подписывают название посеянного микроба и дату посева.

б) Пересев из колонии на мясо-пептонный бульон

Техника пересева на МПБ в основном такая же, как и при посеве на плотную среду.

При посеве на МПБ петлю с находящимся на ней материалом погружают в среду. Если материал вязкий и с петли не снимается, его растирают на стенке сосуда, а затем смывают жидкой средой. Жидкий материал, набираемый стерильной пастеровской или градуированной пипеткой, вливают в питательную среду.

В результате самостоятельной работы студент должен знать:

Методы выделения чистой культуры микроорганизмов

2. Методы культивирования микроорганизмов

Уметь:

1. Навыки соблюдения правил противоэпидемического режима и техники безопасности

Обеззараживать материал, проводить обработку рук

3. Приготовить препараты из колоний бактерий

4. Микроскопировать колоний

5. Окрашивать по Граму микроорганизмы

ЗАНЯТИЕ 8

ТЕМА.

Методы выделения чистых культур (продолжение). Ферментативная активность бактерий и методы ее изучения.

Метод Пастера Метод Коха Биологический Физический

(имеет историческое (пластинчатых

значение) разводок) Химический Метод Щукевича

Современные

Посев петлей Посев шпателем

(Метод Дригальского)

Методы выделения чистых культур (схема 11):

1. Методы механического разобщения основаны на разъединении микробов путем последовательного растирания исследуемого материа­ла по поверхности агара.

а) Метод Пастера – имеет историческое значение, предусматривает последовательное разведение исследуемого материала в жидкой питательной среде методом переката

б) Метод Коха – метод пластинчатых разводок – основан на последовательном разведении исследуемого материала мясо-пептонным агаром с последующей разливкой пробирок с разведенным материалом в чашки Петри

в) Метод Дригальского – при посеве материала, обильно обсемененного микрофлорой, используют 2–3 чашки для последовательного посева шпателем.

г) Посев петлей параллельными штрихами .

2. Биологические методы основаны на биологических свойствах возбудителей.

а) Биологический – заражение высокочувствительных животных, где микробы быстро размножаются и накапливаются. В одних случаях, этот метод является единственным, позволяющим вы­делить культуру возбудителя от больного человека (например, при туляремии),в других случаях – он более чувствителен (например, выделение пневмококка на белых мышах или воз­будителя туберкулеза на морских свинках).

б) Химический – основан на кислотоустойчивости микобактерий. Для освобождения материала от сопутствующей флоры, его
обрабатывают раствором кислоты. Вырастут только туберкулезные палочки, так как кислотоподатливые микробы погибли под действием кислоты.

в) Физический метод основан на устойчивости спор к нагреванию. Для выделения культуры спорообразующих бактерий из
смеси материал прогревают при 80°С и засевают на питательную среду. Вырастут только споровые бактерии, так как споры их остались живыми и дали рост.

г) Метод Щукевича – основан на высокой подвижности вуль­гарного протея, способного давать ползучий рост.

Методика пересева из колоний на скошенный агар и МПБ:

а) Пересев из колоний на скошенный агар

Приоткрывают крышку чашки, прокаленной остуженной петлей снимают часть отдельной колонии, открывают пробирку со стерильным скошенным агаром, держа ее в левой руке в наклонном положении, так, чтобы можно было наблюдать поверхность среды. Переносят петлю с культурой в пробирку, не прикасаясь к стенкам, растирают по питательной среде, скользя по поверхности от одного края пробирки к другому, поднимая штрихи до верхушки среды – посев штрихом. Пробирку закрывают и, не выпуская из рук, подписывают название посеянного микроба и дату посева.

б) Пересев из колонии на мясо-пептонный бульон

Техника пересева на МПБ в основном такая же, как и при посеве на плотную среду. При посеве на МПБ петлю с находящимся на ней материалом погружают в среду. Если материал вязкий и с петли не снимается, его растирают на стенке сосуда, а затем смывают жидкой средой. Жидкий материал, набираемый стерильной пастеровской или градуированной пипеткой, вливают в питательную среду.

В результате самостоятельной работы студент должен знать:

1. Методы выделения чистой культуры микроорганизмов

2. Методы культивирования микроорганизмов

Уметь:

1. Навыки соблюдения правил противоэпидемического режима и техники безопасности

2. Обеззараживать материал, проводить обработку рук

3. Приготовить препараты из колоний бактерий

4. Микроскопировать колоний

5. Окрашивать по Граму микроорганизмы

ЗАНЯТИЕ 8

ТЕМА. Методы выделения чистых культур (продолжение). Ферментативная активность бактерий и методы ее изучения.

  • 4. Дифференциально-диагностические методы окраски микробов. Окраска по Граму, механизм и техника окраски.
  • 5. Морфология бактерий. Отличия прокариотов от эукариотов. Основные формы бактерий.
  • 6. Структура и функции поверхностных образований бактериальной клетки. Капсула. Методы выяв­ления.
  • 7. Структура и функции клеточной стенки грамположительных и грамотрицательных бактерий. Фор­мы бактерий с дефектами клеточной стенки.
  • 8. Цитоппазматические структуры бактерий, функции, методы выявления. Кислотоустойчивые мик­робы. Метод окраски.
  • 9. Покоящиеся формы микробов. Спорообразование у бактерий, стадии, методы выявления спор.
  • 10. Подвижность бактерий, методы выявления подвижности.
  • 11. Принципы систематики микробов. Систематическое положение микробов. Таксономические кате­гории. Понятие и критерии вида.
  • 12-16. Систематическое положение и морфология спирохет, актиномицетов, микоплазм, риккетсий, хламидий. Методы изучения.
  • 18. Дыхательный аппарат бактерий. Пути биологического окисления. Классификация микробов по этому признаку
  • 19 Способы размножения микробов. Механизм и фазы клеточного деления.
  • 20. Характеристика бактериологического метода исследования
  • 21. Питательные среды для аэробов и анаэробов. Требования, предъявляемые к питательным сре­дам, классификация.
  • 22. Методы выделения чистых культур аэробов.
  • 23. Методы выделения чистых культур анаэробов.
  • 24. Идентификация микроорганизмов морфологическая, культуральная серологическая, биологиче­ская, генетическая.
  • 26. Генетический аппарат бактерий (хромосомы, плазмиды) характеристика бактериальных транспозонов. Биологическая роль плазмид.
  • 27. Виды изменчивости бактерий. Фенотипическая и генотипическая изменчивость. Понятие о популяционной изменчивости.
  • 28. Мутационная изменчивость. Генетические рекомбинации. Практическое значение изменчивости микроорганизмов. Понятие о генной инженерии и биотехнилогии.
  • 29. Молекулярная диагностика. Цель. Задачи. Методы.
  • 30. Молекулярная гибридизация. Полимеразная цепная реакция.
  • 31. Учение об инфекции. Условия возникновения инфекционного процесса. Отличительные признаки инфекционных заболеваний. Типы инфекций.
  • 32. Роль микроорганизма в инфекционном процессе. Патогенность и вирулентность Факторы патогенности.
  • 33. Роль макроорганизма, физической и социальной среды в инфекционном процессе.
  • 34. Биологический метод исследования задачи, оценка этапы.
  • 35. Химиотерапия и химиопрофилактика. Антибиотики определение классификация.
  • 36. Механизм действия антибиотиков.
  • 37. Побочное действие антибиотиков.
  • 38. Устойчивость микроорганизмов к антибиотикам.
  • 39 Методы изучения чувствительности микробов к антибиотикам.
  • 40. Экология микроорганизмов. Типы экологических связей.
  • 41. Характеристика нормальной микрофлоры человека и ей биологическая роль. Методы изучения. Гнотобиология. Дисбактериоз. Причины развития, принципы коррекции.
  • 42 Стерилизация, дезинфекция. Определение понятий, методы проведения.
  • 43. Асептика, антисептика. Определение понятий. Способы проведения.
  • 22. Методы выделения чистых культур аэробов.

    Процесс выделения чистой культуры можно разделить на несколько этапов.

    Первый этап. Из исследуемого материала готовят мазок, окрашивают его по Граму или другим методом и микрсгскопиру-ют. Для посева исследуемый материал в случае необходимости разводят в пробирке со стерильным изотоническим раствором хлорида натрия. Одну каплю приготовленного разведения нано­сят петлей на поверхность питательного агара в чашку Петри и тщательно втирают шпателем в среду, равномерно распределяя материал по всей ее поверхности. После посева чашку перевора­чивают дном кверху, подписывают и помещают в термостат при температуре 37 °С на 18-24 ч.

    Второй этап. Просматривают чашки и изучают изолиро­ванные колонии, обращая внимание на их форму, величину, кон­систенцию и другие признаки. Для определения морфологии кле­ток и их тинкториальных свойств из части исследуемой колонии готовят мазок, окрашивают по Граму и микроскопируют. Для выделения и накопления чистой культуры одну изолированную колонию или несколько различных изолированных колоний пе­ресевают в отдельные пробирки со скошенным агаром или какой-либо другой питательной средой. Для этого часть колонии сни­мают петлей, не задевая соседние колонии.

    Третий этап: Отмечают характер роста выделенной чис­той культуры. Визуально чистая культура характеризуется однородным ростом. При микроскопическом исследовании окрашен­ного мазка, приготовленного из такой культуры, в нем обнару­живаются морфологически и тинкториально однородные клетки. Очнако в случае выраженного полиморфизма, присущего неко­торым видам бактерий, в мазках из чистой культуры наряду с типичными встречаются и другие формы клеток.

    23. Методы выделения чистых культур анаэробов.

    Питательные среды для анаэробов должны отвечать следующим основным требованиям: 1) удовлетворять питательным потребно­стям; 2) обеспечивать быстрый рост микроорганизмов; 3) быть адек­ватно редуцированными

    Посевы с целью выделения анаэробной микрофлоры, как спо-рообразующей (клостридии), так и неспорообразующей (вейлонеллы, бактероиды, пептококки), производят в строго анаэроб­ных условиях. Первичные посевы делают на обогатительные сре­ды (тиогликолевую, Китта - Тароцци), затем пересевают на плотные среды: сахарный кровяной агар в чашки Петри, в высо­кий столбик сахарного питательного агара или другие среды для получения изолированных колоний. После инкубации посевов в анаэробных условиях из образовавшихся колоний бактерий го­товят мазки, окрашивают, микроскопируют, а затем пересевают на среду Китта - Тароцци и агаровые среды для выделения чистой культуры.

    При выделении спорообразующих анаэробных бактерий (кло­стридии) первоначальные посевы прогревают на водяной бане при температуре 80 °С в течение 20 мин для уничтожения веге­тативных клеток посторонней микрофлоры, которая может при­сутствовать в исследуемом материале

    24. Идентификация микроорганизмов морфологическая, культуральная серологическая, биологиче­ская, генетическая.

    Идентификация – это определение систематического положения, выделение из какого-либо источника до уровня вида или варианта.

    25. Биохимический метод идентификации: определение протеолитических. сахаролитических, липолитических свойств, выявление гемолизинов и оксидоредуктаз. Использование автоматических микробиологических анализаторов .

    Этот метод предусматривает изучение ферментативной деградации различных субстратов (углеводов, аминокислот и белков, мочевины, перекиси водорода и др.) с образованием промежуточных и конечных

    продуктов.

    Карбогидразы - ферменты, разлагающие углеводы. Определяя карбогидразы, выявляют т.н. сахаролитические свойства микробов. С этой целью используют следующие среды:

    а) среды Гисса (жидкие и полужидкие с индикаторами). В качестве последних используют реактив Андреде, бромтимоловый синий или ВР О ферментативной активности бактерий судят по изменению цвета среды и образованию газа;

    б) дифференциально-диагностические среды с лактозой (Эндо, Левина. Плоскирева и др.);

    в) полиуглеводные среды (типа Олькеницкого, Клиглера и др.).

    Протеазы -ферменты, разлагающие белки:

    а) исследуемая культура может расщеплять белки субстрата с образованием пептона, альбумоз, аминокислот. Этот процесс идет за счет ферментов-протеиназ и пептидаз. Для выявления указанных ферментов исследуемую культуру засевают на ряд сред: свернутая сыворотка, столбик желатина (разжижение в положительных случаях), молочный агар в чашке Петри (в положительных случаях вокруг колоний появляются зоны помутнения);

    б)расщепление аминокислот микробами может идти путем декарбоксилирования, либо путем дезаминирования. В первом случае из той или иной аминокислоты образуются амины, которые выявляются либо методом элекрофореза. либо по подщелачиванию среды. О наличии дезаминаз у микроба судят по образованию аммиака в среде как результат процесса дезаминирования аминокислоты;

    в) расщепление аминокислоты триптафана за счет действия фермента триптафаназы сопровождается образованием индола. Последний выявляется с помощью бумажки, смоченной щавелевой кислотой и укрепленной под пробкой над питательной средой. В положительныхслучаях бумажка краснеет;

    г) для выявления ферментов расщепления серосодержащих аминокислот (цистин, цистеин) ставят пробы на H2S, как Продукт расщепления этих аминокислот десульфуразами. Наличие H2S выявляется и в среде Олькеницкого;

    д) для выявления уреазы - фермента, расщепляющего мочевину, в питательную среду нейтральной рН добавляют мочевину и индикатор. В положительных случаях среда изменяет цвет за счет сдвига рН в щелочную сторону в связи с образованием аммиака. Липазы - ферменты разложения липидов и липоидов. Чаще всего определяют лецитиназу посевом на желточный агар. Лецитиназа расщепляет лецитин на фосфохолин и диглицерид. В этих случаях при росте колоний вокруг них появляются опалесцирующие зоны, отражающие лецитиназную активность.

    Ферменты-токсины : Гемолизины - ферменты расщепления фосфолипидной мембраны эритроцитов. Они выявляются посевом культуры на кровяной агар (5-10%). Различают b-гемолиз или полный гемолиз, когда образуются зоны просветления вокруг колоний, а-гемолиз, неполный гемолиз, при наличии зон зеленого цвета вокруг колоний. Отсутствие гемолиза обозначается как д-гемолиз.

    Цитотоксины - ферменты, оказывающие токсический эффект на клетки мишени. Например, цитотоксичность токсина анаэробных микрорганизмов определяют на культуре клеток. С этой целью 1 г материала (испражнения или др.) разводят в фосфатном буфере 1:10 масса/объем, центрифугируют ЗО мин при 4ООО об/мин. Супернатант фильтруют на фильтре 2О нм, вносят в монослой культуры клеток МакКоя и инкубируют при 37°С 24-48 часов до достижения токсического эффекта.

    Иммунохимическое определение продукции токсинов: используется, как правило, иммуноферментный метод определения многих экзотоксинов -дифтерийного, холерного, стафилококкового и др. Для этого применяются тест-системы на основе моноклональных антител к определенному экзотоксину.

    Ппазмокоагулаза - фермент, свертывающий плазму крови животных. Определяют в пробирочной реакции. В1 мл цитратной плазмы кролика или человека (цельной или разведенной в 2 и 4 раза физраствором) размешивают петлю суточной агаровой культуры микроба. Смесь инкубируют в термостате при 37°С. В положительных случаях через 2-4 часа плазма свертывается (появляется сгусток). Лецитиназа - см. выше.

    Оксидо-редуктазы:

    1. Определение оксидаз . На фильтровальную бумагу, смоченную 1% раствором тетраметилпарафенилендиамина, петлей наносят полосы испытуемой культуры. В положительном случае появляется фиолетовое окрашивание полос (в течение 1 мин).

    2. Определение каталазы . Каплю 3% раствора перекиси водорода наносят на предметное стекло и туда вносят петлю испытуемой культуры. В присутствии каталазы образуются пузырьки кислорода.

    3. Определение дегидраз . О наличии дегидраз судят по редуцирующей способности микроба, т.е. способности восстанавливать некоторые органические красители (например, 1% водный раствор метиленовой синьки). К столбику сахарного агара (донатор водорода) добавляют краситель (акцептор водорода) и засевают микробную культуру уколом. В положительных случаях растущий на такой среде микроб ее обесцвечивает.

    4. Определение спектра короткоцепочечных жирных кислот (КЦЖК), Анаэробные микроорганизмы продуцируют промежуточные продукты, включающие короткоцепочечные жирные кислоты и спирты, спектр (профиль) которых различен у разных видов микроорганизмов и позволяет проводить идентификацию микроорганизмов до уровня рода. Наиболее часто исследуют уксусную, пропионовую, бутиловую, изобутиловую, валериановую, изовалериановую, капроновую и изокапроновую кислоты. Для определения КЦЖК используют метод газожидкостной хроматографии. Идентифицируют такие микроорганизмы как актиномицеты, пролионибактерии, эубактерии, бифидобактерии, клостридии.

    В последние годы а бактериологических лабораториях применяются коммерческие тест-системы для быстрой биохимической идентификации (определение биохимической активности разных групп микроорганизмов): например, 2О тестов для энтеробактэрий и ЗО тестов для анаэробов. Схема идентификации включает следующие этапы:

    Колонии ---- Приготовление ---- Внесение ----- Инкубация ---- Учет(+ -) ---- Интер-

    суспензии суспензии 4 часа 37°С претация в среду

    В качестве материала для идентификации используют хорошо изолированную колонию на чашке или чистую культуру в пробирке, из которой готовят суспензию в концентрации стандарта оптической плотности N4, затем по 55 мкл суспензии вносят в лунки со средами данной тест-системы. Планшета со стрипами инкубируется при 37°С 4 часа. Учет может осуществляться автоматически (используя прибор "АТВ") или визуально Результат биохимической реакции оценивают в виде "+" или "-" и вносят о референс-таблицу, в которой положительному результату соответствует численное выражение, в результате чего получается определенный числовой профиль, соответствующий специапьно разработанному индексу аналитического профиля, позволяющему быстро идентифицировать тот ипи иной

    микроорганизм.

    В ряду последовательных десятикратных разведений испытуемого образца из 2 последних разведений (степень разведения зависит от количества КОЕ в 1 дозе исследуемого препарата) по 0,1 мл микробной суспензии высевают на чашки Петри с питательной средой (по 2 чашки на каждое разведение). Суспензию равномерно распределяют по поверхности среды шпателем Дригальского или с помощью стеклянных бус до полного впитывания (высыхания) суспензии. Чашки закрывают и помещают перевернутыми вверх дном в термостат для инкубации.

    Посевы инкубируют при температуре (37  1) о С в течение 24–96 ч в адекватных, в зависимости от вида микроорганизма, условиях (аэробных, микроаэрофильных или анаэробных). При инкубировании в анаэробных или микроаэрофильных условиях чашки Петри с посевами помещают в анаэростат и создают необходимую газовую атмосферу.

    Данный метод может быть использован при определении количества живых бактерий каждого вида в поликомпонентных пробиотиках при условии, что бактерии, входящие в состав препарата, образуют визуально различимые по форме и другим признакам колонии.

    1.2. Глубинный чашечный метод

    В ряду последовательных десятикратных разведений испытуемого образца из 2 последних разведений (степень разведения зависит от количества КОЕ в исследуемом препарате) по 1,0 мл микробной суспензии стерильной пипеткой вместимостью 1,0 мл вносят в чашки Петри диаметром 90 мм (по 2 чашки на каждое разведение). Добавляют 20–25 мл расплавленной и охлажденной до температуры 42,5 ± 2,5 о С агаризованной питательной среды, закрывают и быстро осторожно перемешивают вращательно-поступательными движениями, не отрывая дна чашки от поверхности стола и не допуская попадания среды на крышку чашки. После застывания агара чашки Петри переворачивают вверх дном и инкубируют в адекватных условиях при температуре (37  1) о С в течение необходимого для данного микроорганизма времени.

    Учет результатов

    По окончании инкубации производят подсчет выросших на чашках Петри колоний и вычисляют содержание живых бактерий в 1 дозе испытуемого образца. При подсчете учитывают чашки, на которых выросло не менее 15 колоний.

    Пример расчета содержания живых микробных клеток в 1 дозе испытуемого образца:

    – из разведения 10 -7 выросло 42 и 45 колоний; среднее арифметическое равно (42+45) : 2 = 43,5;

    – из разведения 10 -6 выросло 410 и 450 колоний; среднее арифметическое равно (410+450) : 2 = 430;

    – количество живых бактерий в 1 дозе равно:

    (43,5 ∙ 10 7 + 430 ∙ 10 6) : 2 10 = 4325000000 = 4,3 ∙ 10 9 .

    Умножают среднюю арифметическую числа колоний на степень разведения и в том случае, если высев на чашку Петри сделан в объеме 0,1 мл, умножают на коэффициент 10 для пересчета на 1,0 мл.

      Метод предельных разведений с последующим высевом на жидкие и полужидкие питательные среды

        Пробирочный метод наиболее вероятных чисел (определение количества живых ацидофильных лактобактерий)

    В ряду последовательных десятикратных разведений испытуемого образца 10 -6 , 10 -7 , 10 -8 , 10 -9 (степень разведения зависит от количества КОЕ в испытуемом образце) высевают по 1 мл микробной суспензии от каждого разведения в 2 пробирки с 9 мл стерильного обезжиренного молока. Отмечают, из какого именно разведения сделан посев. Разведение 10 -6 препарата в 0,9 % растворе натрия хлорида соответствует разведению 10 -6 в молоке. Для контроля среды добавляют 4 незасеянные пробирки с молоком. Засеянные и контрольные пробирки инкубируют при температуре (38  1) 0 С в течение 3–4 сут.

    По окончании инкубацииопределяют количество пробирок со свернувшимся молоком. Из сгустка с культурой готовят мазки и окрашивают по Граму. Если в мазках видны характерные бактерии и отсутствует посторонняя микрофлора, то данное разведение учитывают, как содержащее микроорганизмы данного вида. В случае сквашивания молока в контрольных пробирках и при обнаружении посторонней микрофлоры в мазках, контроль проводят на новой партии среды.

    Учет результатов

    При подсчете количества живых особей используют таблицу Мак-Креди (табл. 1). Сначала составляют числовую характеристику. Она состоит из 3 цифр: на первое место (слева) ставят цифру, равную числу пробирок со свернувшимся молоком, взятых в том последнем разведении, где молоко свернулось во всех пробирках (например, 2 пробирки разведения 10 -6).

    Следующие две цифры обозначают число пробирок со свернувшимся молоком в 2 последующих разведениях (например, в 1 пробирке разведения 10 -7 и в 1 пробирке разведения 10 -8).

    Числовая характеристика результата будет 211.

    По таблице Мак-Креди находят вероятное число, соответствующее полученной цифровой характеристике (в нашем случае 13), умножают его на разведение, которому соответствует первая цифра числовой характеристики (в данном примере – 10 -6). Тогда количество живых особей микроорганизмов в 1 дозе составляет 13 ∙ 10 6 = 1,3 ∙ 10 7 .

    Таблица 1  Таблица Мак-Креди, используемая при подсчете количества живых ацидофильных лактобактерий

    Числовая характеристика

    Наиболее вероятное число микроорганизмов при посеве в 2 параллельные пробирки

  • C. создание благоприятных условий для нормальной жизнедеятельности клеток
  • D) на секторах среды Эндо выросли лактозо-отрицательные колонии.
  • D. снижением чувствительности инсулинзависимых клеток к инсулину под влиянием глюкокортикоидов
  • В отличие от подсчета клеток под микроскопом, этот метод дает возмож-

    ность определить только число жизнеспособных клеток в популяции. Поскольку сред, одинаково пригодных для роста различных микроорганизмов, не существует, метод высева дает возможность определить число клеток микроорганизмов, способных расти на среде данного состава, но не позволяет учесть те микроорганизмы, которые не растутут или растут крайне медленно.

    Метод широко применяется для опредления численности жизнеспособных клеток в различных естественных субстратах и в лабораторных питательных средах. Сущность его заключается в высеве определенного объема исследуемой суспензии микроорганизмов на плотную среду в чашки Петри и подсчете выросших после инкубации колоний. Принято считать, что каждая колония - потомство одной клетки.

    Работа этим методом включает три этапа: приготовление разведений, посев на плотную среду в чашки Петри и подсчет выросших колоний.

    Приготовление разведений . Численность популяции микроорганизмов обычно достаточно велика, поэтому для получения изолированных колоний необходимо приготовить ряд последовательных разведений. Разведения готовят в водопроводной воде или 0,85%-ном растворе NaCl, используя постоянный коэффициент разведения, чаще всего равный 10. В ходе опыта целесообразно использовать один и тот жеикоэффициент разведения, так как это уменьшает вероятность ошибки. Для приготовления разведений стерильную водопроводную воду разливают по 9 мл в стерильные сухие пробирки. Затем 1 мл иссле-дуемой суспензии стерильной пипеткой переносят в пробирку с 9 мл стерильной воды - это 1-е разведение,10 -1 . Полученное разведение тщательно перемешивают новой стерильной пипеткой, вбирая в пипет­ку и выпуская из нее полученную взвесь. Эту процедуру выполняют 3-5 раз, затем этой же пипеткой отбирают 1 мл полученной суспензии и переносят во 2-ю пробирку - получают 2-е разведение, 10 -2 . Таким же образом готовят и последующие разведения. Степень разведения зависит от плотности исследуемой популяции микроорганизмов; соот­ветственно она тем больше, чем больше плотность популяции.

    Для приготовления каждого разведения следует обязательно ис­пользовать новую пипетку. Пренебрежение этим правилом приводит к получению ошибочного результата.

    Проведение посева . Высевать суспензию можно поверхност­ным или глубинным способом.

    Перед посевом поверхностным способом (рис. 16) разливают рас­плавлен-ную, чаще всего агаризованную, питательную среду в ряд сте­рильных чашек Петри по 15-20 мл в каждую. Чашки оставляют на горизонтальной поверх-ности, поеа среда не застынет. Поверхность агаризованных сред перед посевом рекомендуется подсушивать для удаления конденсационной воды. С этой целью чашки Петри открывают и застывшей средой вниз помещают на 20-30 мин в сушильный шкаф, нагретый до 70-80 0 С. Предварительно шкаф необходимо простерилизовать.

    Рисунок 16. Схема приготовления разведений и рассева суспензии микроорганизмов шпателем.

    Агаризованную среду можно подсушить, поместив чашки в тер­мостат на 2-3 суток крышками вниз. После того как среда готова, на ее поверхность стерильной пипеткой наносят точно измеренный объем (0,05 или 0,1 мл) соответствующего разведения и распределяют его стерильным стеклянным шпателем по поверхности среды. Высевы на плотную среду проводят, как правило, из трех последних разведений, причем из каждого делают 2-4 параллельных высева. Посевы можно делать одной пипеткой, но при этом начинать следует обязательно с большего разведения. Для каждого разведения используют новый сте­рильный шпатель. После посева чашки Петри помещают в термостат крышками вниз.

    При глубинном посеве (рис. 17) точно измеренный объем (как правило, 0,1, 0,5 или 1 мл) суспензии или разведения вносят в расплав­ленную и остуженную до 48-50° агаризованную среду, тщательно пе­ремешивают и затем немедленно выливают в чашку Петри. Среде дают застыть. В случае глубинного посева обычно пользуются средой, раз­литой в пробирки. При больших масштабах работы среду по пробир­кам не разливают, а поступают следующим образом. По

    Рисунок 17. Схема приготовления разведений и посева суспензии микроорганизмов глубинным способом

    1 мл из соот­ветствующего разведения переносят стерильной пипеткой в 2-4 сте­рильные чашки Петри. Затем заливают чашки 15-20 мл расплавлен­ной и остуженной до 48-50° плотной средой и тщательно смешивают питательную среду с посевным материалом легким вращательным движением чашки по поверхности стола, после чего чашки оставляют на горизонтальной поверхности до застывания. Когда среда застынет чашки Петри помещают в термостат.

    Для определения количества клеток анаэробных микроорганизмов чашки Петри с плотной средой после посева помещают в анаэростаты.

    Подсчет выросших колоний . Колонии бактерий подсчиты­вают обычно через 3, колонии грибов и дрожжей - через 5-7, а колонии актиномицетов - через 7-15 суток инкубации в термостате.

    Подсчет, как правило, проводят, не открывая чашек Петри. Для удобства чернилами или карандашом по стеклу отмечают просчитан­ную колонию точкой на наружной стороне дна чашки. При большом количестве колоний дно чашки Петри делят на секторы, подсчитывают число колоний в каждом секторе и результаты суммируют. Существуют специальные счётчики для подсчёта колоний (рис.18). Для подсчёта колоний чашкуПетри крышкой вниз помещают на стерильный столик (1), подсвечиваемый снизу, и подсчитывают колонии пером с пружинным острием (2). Остриём пера касаются дна чашки в участке, соответствующем положению колоний, и нажимают на перо. В результате на стекле остается метка, а держатель поднимается вверх, замыкая цепь, и показания счётчика увеличиваются на единицу. Затем острие пера поднимают над стеклом, пружина возвращает его в исходное положение, и цепь размыкается.

    Рисунок18. Счетчик для подсчета числа колоний микроорганизмов

    Лучшим разведением следует считать то, при высеве из которого на агаровой пластинке в чашке Петри вырастает от 30-50 до 100- 150 колоний. Если число выросших колоний оказалось меньше 10, то эти результаты для расчета количества клеток в исходном материале не используют. Результаты параллельных высевов из одного и того же разведения суммируют и определяют среднее число колоний, выросших при высеве из данного разведения на одной чашке.

    Количество клеток в 1 мл исследуемого субстрата вычисляют по

    формуле: М= а 10 n ,

    где М - количество клеток в 1 мл, а - среднее число колоний при высеве данного разведения, 10-коэффициент раз­ведения, п - порядковый номер разведения, из которого сделан высев, V -объем суспензии, взятый для посева, в мл.

    Похожие статьи