Подводная лодка с аэробным двигателем. Двигатель Стирлинга – принцип работы

1

В статье представлены варианты созданных и разрабатываемых воздухонезависимых энергетических установок (airindependentpower /AIP) подводных лодок. Показаны ориентировочные границы использования и примеры реализации воздухонезависимых энергетических установок подводных лодок на основе тепловых двигателей (двигателей внутреннего сгорания, двигателей с внешним подводом теплоты, паротурбинные и газотурбинные энергетические установки), прямого преобразования химической энергии топлива в электрическую (Polymer Electrolyte (or Proton Exchange Membrane) Fuel cells, Solid Oxide Fuel Cells, реформинг углеводородного топлива с получением водорода), аккумуляторных батарей высокой емкости, высокометаллизированного топлива и «термитных смесей». Указаны примеры реализации различных технологий в подводном кораблестроении и компании, проводящие научно-исследовательские работы по созданию данных технологий. Приведены основные особенности работы энергоустановок, их достоинства и недостатки.

виды топлива

энергетическая установка

подводная лодка

воздухонезависимая энергетическая установка (ВНЭУ)

1. Васильев В.А., Чернышов Е.А., Романов И.Д., Романова Е.А., Романов А.Д. История развития подводных лодок с воздухонезависимыми энергоустановками в России и СССР // Труды НГТУ им. Р.Е. Алексеева. – 2012. – № 4. – С. 192-202.

2. Генкин А.Л. и др. Анаэробный источник теплоты на безгазовом топливе для аварийного обогрева водолазов // Судостроение. 2010. – № 2. – С. 36-38.

3. Дядик А.Н., Замуков В.В., Дядик В.А. Корабельные воздухонезависимые энергетические установки. – СПб.: Судостроение, 2006. – 424 с.

4. Замуков В. В., Сидоренко Д. В. Выбор воздухонезависимой энергоустановки неатомных подводных лодок // Судостроение. – 2012. – № 4. – С. 29-33.

5. Замуков В.В., Сидоренко Д.В., Петров С.А. Состояние и перспективы развития воздухонезависимых энергоустановок подводных лодок // Судостроение. – 2007. – № 5. – С. 39-42.

6. Захаров И.Г. Концептуальный анализ в военном кораблестроении. – СПб.: Судостроение, 2001. – 264 с.

7. Никифоров Б.В. и др. Литий-ионные аккумуляторные батареи в качестве основных источников электроэнергии дизель-электрических подводных лодок // Судостроение. – 2010. – № 2. – С. 25-28.

8. Чернышов Е.А., Романов А.Д. Высокометаллизированное топливо на основе алюминия и его применение // Технические науки – от теории к практике. – 2013. – № 24. – С. 69-73.

9. Ястребов В.С. Системы и элементы глубоководной техники подводных исследований. –Л.: Судостроение.

10. Dr Carlo Kopp. Air Independent Propulsion – now a necessity // Defence Today. – 12/2010.

Энергетическая установка неатомной подводной лодки (ПЛ) представляет собой тяжелую, до 30 % массы, и объемную, до 50 % от водоизмещения, конструкцию. Однако классическая дизель-электрическая установка работает не эффективно, в подводном положении не используется дизельная установка и запас углеводородного топлива, в надводном, если не реализован режим полного электродвижения, становятся «не нужными» аккумуляторные батареи. Поэтому с момента первого появления подводных лодок предлагались различные типы тепловых «единых двигателей», они развивались по следующим направлениям :

  • Аккумулирования теплоты (уксусно-кислый натрий, жидкий металл).
  • Паротурбинные установки замкнутого и открытого цикла: горение металлов или углеводородного топлива с применением в качестве окислителя перекиси водорода (цикл Вальтера).
  • Двигатели внутреннего сгорания: открытого цикла («Y», «Почтовый», ЕД-ВВД, Kreislauf), замкнутого цикла (применение водорода и кислорода, РЕДО, ЕД-ИВР, ЕД-ХПИ), с применением в качестве окислителя перекиси водорода (Х-1, ПВК), с применением твердого источника кислорода (надперекись натрия).

На рис. 1 и 2 Приведены ориентировочные границы применимости энергетических установок и примеры реализации с указанием проекта ПЛ.

Рис. 1. Диапазон применения различных энергетических установок на ПЛ

* - ПЛ без установленного вооружения.

** - экспериментальная ПЛ лаборатория.

Рис. 2. Диаграммы мощности и продолжительности работы различных источников тока

Знаком * отмечен диапазон, рассмотренный в отдельно.

Из рис. 1 видно, что фактически самые крупные ПЛ с аккумуляторными батареями крупнее ПЛ, оснащенных ядерной энергетической установкой. Однако это не мешает развиваться ПЛ с другими типами ЭУ. Можно привести пример торпед, все они при сравнимых габаритах оснащены различными типами ЭУ.

В настоящее время разрабатываются и внедряются энергоустановки на основе:

  • Тепловых двигателей: двигатели с внешним подводом теплоты (Стирлинга), дизель по замкнутому циклу, паровые турбины замкнутого цикла, газотурбинных установок замкнутого цикла с использованием различных комбинаций высокометаллизированного топлива и окислителя.
  • Прямого преобразования химической энергии топлива в электрическую (топливные элементы), включая конверсию/реформинг углеводородного топлива и гидротермальное окисление металла, с получением водорода, использующегося в ЭХГ.
  • Аккумуляторных батарей высокой емкости, без подзарядки в море.
  • Малогабаритных атомных энергоустановок, включая вспомогательные.

Практически для всех энергетических установок принят универсальный окислитель - кислород. Это связано с относительной простотой его получения, из воздуха, и обработанностью систем его хранения, в большинстве случаев - криогенное хранение.

Рассмотрим особенности различных воздухонезависимых энергетических установок.

1. ЭУ на основе тепловых двигателей

Все эти принципиально разные по конструкции установки объединяет применяемое топливо (жидкие углеводороды) и механическое преобразование химической энергии топлива в механическую, а затем в электрическую. К тому же жидкое углеводородное топливо имеет преимущество по хранению, транспортировке. Применение топливно-балластных цистерн и возможность дозаправки в море значительно увеличивают возможный радиус действия. Данные конструкции могут использовать в качестве окислителя атмосферный воздух в режиме «работа двигателей под водой» (РДП / Schnorchel).

1.1. ЭУ на основе дизелей по замкнутому циклу (ДЗЦ, closed-cyclediesel, CCD)

Данные системы наиболее распространены, некоторые ДЗЦ базируются на опыте эксплуатации дизельных двигателей. Первыми проектами стали ПЛ Бертена и Джевецкого, после второй мировой войны в СССР серийно строились ПЛ с ДЗЦ (А615). Их технологическим преимуществом является использование «стандартных» дизельных двигателей, то есть меньшая стоимость и упрощение обучения экипажа. Однако сложно устранимая высокая шумность дизельного двигателя ограничивает развитие данной технологии. ЭУ на основе дизель по замкнутому циклу отличаются между собой конструктивно, но принцип действия аналогичен: из продуктов сгорания / выхлопных газов удаляется СО2, при сгорании 1 кг дизельного топлива образуется 3,19 кг СО2, нуждающегося в утилизации, например: растворением в морской воде (Argo / ЕД-ИВР), поглощением твердыми продуктами (ЕД-ХПИ, надперекись натрия, хлорид натрия) или вымораживанием, затем газовая смесь обогащается кислородом и направляется в цилиндры.

В настоящее время компания RDM (Голландия) предлагает энергетическую установку SPECTRE (Submarine Power for Extended Continuous Trialand Range Enhancement) на основе дизеля, работающего по замкнутому циклу. Аналогичные работы выполнены компаниями COSMOS (Италия), CDSS (Великобритания) и TNSW (Германия). Однако серийно ПЛ с данными ЭУ не строятся, за исключением малых ПЛ .

1.2. ЭУ на основе двигателя с внешним подводом тепла (Стирлинга)

От всех известных преобразователей энергии прямого цикла, которые могут использоваться в составе анаэробных установок, двигатели Стирлинга выгодно отличаются рядом качеств, которые обуславливают перспективу их применения на неатомных ПЛ: малошумность в работе из-за отсутствия взрывных процессов и достаточно плавного протекания рабочего цикла, что влияет на акустическую скрытность ПЛ; высокий к.п.д., высокое давление продуктов сгорания, позволяющее удалять продукты горения за борт на глубинах до 200 м без компрессора, возможность использования различных типов углеводородного топлива.

Недостатками являются: высокая стоимость; сложность, высокая технологическая емкость конструкции; низкое значение агрегатной мощности реализовано 75 кВт, вероятно, наиболее достигнутая 600 кВт. Примерами реализации данной ЭУ являются проекты А-17, А-19, Imp. Oyashio, возможно Type 041 и 043.

1.3. Паровая турбина ЭУ замкнутого цикла

В настоящее время паровые турбины замкнутого цикла MESMA (Moduled’EnergieSous-MarineAutonome) внедряются на ПЛ проекта Agosta90B и Scorpene. По данным концерна «DCN», выходная мощность ЭУ ”MESMA” составляет 200 кВт. Установка производит тепловую энергию путем сжигания газообразной смеси этилового спирта и кислорода в первичном контуре теплообменника. Вторичный контур представляет собой паровую турбину, которая приводит в действие высокоскоростной турбогенератор. В настоящее время в Бразилии в г. Итагуаи идет строительство верфи для производства подводных лодок (MetalStructuresManufacturingUnit). Данная верфь обладает всем необходимым для производства корпусных секций в рамках программы кораблестроения PROSUB. Головная ПЛ должна приступить к испытаниями в 2016 году.

Аналогом данной разработки в России можно назвать исследования ОАО «СПМБМ Малахит» и НПВП «Турбокон».

1.4. Газотурбинная установка ЭУ замкнутого цикла

Разрабатываются различные варианты оснащения ПЛ газотурбинной установкой замкнутого цикла. Газотурбинный двигатель (ГТД) - это уравновешенная тепловая машина, обладающая меньшими по сравнению с ДВС вибрационными характеристиками, шумность - слабое место ГТД, однако акустические возмущения имеют высокую частоту, что возможно снизить за счет шумоизоляции. В России НПО «Сатурн» имеет задел по малогабаритным ГТД для современных летательных аппаратов военного назначения. На сегодняшний день ОАО СПМБМ «Малахит», совместно с НПО «Сатурн» и НПО «Гелиймаш», выполнили расчетные исследования созданию ВНЭУ с ГТД .

2. ЭУ на основе топливных элементов

Топливный элемент - электрохимическое устройство, которое преобразовывает химическую энергию топлива и окислителя в электрическую. Топливные элементы могут использовать ископаемое топливо (главным образом, природный газ или бензин) или непосредственно водород (в случае топливных элементов PEM).

Основные направления развития топливных элементов: Polymer Electrolyte (or Proton Exchange Membrane) Fuel cells PEM/PEMFC, Phosphoric Acid Fuel Cells (PAFC), Molten Carbonate Fuel Cells (MCFC), Solid Oxide Fuel Cells (SOFC).

2.1. ЭУ на основе Proton Exchange Membrane (PEM)

Низкотемпературные ЭХГ имеют удельную мощность порядка 65 Вт/кг, ресурс порядка 5000 ч. При этом удельный расход водорода от 0,045 - 0,048кг/кВт*ч, расход кислорода 0,36 - 0,38 кг/кВт*ч. Топливные элементы BZM120 имеют мощность 120 кВт каждый и весят 900 кг с объема 500 литров. Композиция топлива водород + кислород с продуктами реакции вода являются теоретически лучшей композицией по энерговыделению на 1 г продуктов реакции и простоты утилизации продуктов реакции на ПЛ. Однако масса систем хранения водорода значительна, запас при криогенном хранении водорода не превышает 5 % от массы систем хранения, при газообразном около 3 % в адсорбированном виде в интерметаллидных соединениях. Высокая стоимость создания ЭУ и береговой инфраструктуры, технологические проблемы с хранением топлива, невозможность организации базирования ПЛ в недостаточно оборудованных пунктах существенно снижают мобильность и боевую устойчивость, так как уничтожение базы фактически сделает невозможным применение ПЛ. Поэтому разрабатываются альтернативные варианты хранения водород содержащего топлива (NH3, гидриды металлов, гидрореагирующее топливо) и вариантов получения водорода из него.

2.1. ЭУ на основе реформера метанола и PEM

Метанол имеет меньшую теплоту сгорания, чем дизельное топливо, и более токсичен, однако его чистота позволяет применять его для реформеров. HDW разработала концепцию дизель-элек-трической подводной лодки, предна-значенной для решения широкого круга задач в удаленных океанских (морских) зонах, пр. 216. Аналогичный проект разработан DCNS для пр. S-80A. Повышение скрытности и увеличение продолжительности автономных действий ПЛ намечается достигнуть благодаря при-менению комбинированной электроэнерге-тической установки, включающей четыре дизель-генератора, литий-ионные аккуму-ляторные батареи и электрохимические генераторы фирмы. В целях обе-спечения работы последних планируется использовать бортовой генератор водорода с метанол-паровым риформером. Принцип действия генератора заключа-ется в следующем: метанол смешивается с водой, испаряется и затем подается в реак-тор. Смесь метанол - вода преобразуется в насыщенную водородом газовую смесь, которая поступает в мембранный блок очистки. Основная часть водорода проходит через мембрану и далее в то-пливный элемент. Схема имеет преимущества перед PEM в части применяемого топлива, обеспечении большей дальности, за счет вспомогательного дизель-генератора и снижением уязвимости береговой инфраструктуры. Однако требует дополнительные системы на борту ПЛ - реформинга и утилизации СО2.

2.3. ЭУ на основе Solid Oxide Fuel Cell (SOFC)

Solid Oxide Fuel Cell принадлежат группе высокотемпературных топливных элементов. Они работают при температурах до 1000 °C и могут использовать разнообразное топливо: газообразный водород или углеводороды (бензин, дизель, керосин), природный газ. Причем их особенностью является возможность применения топлива с меньшей степенью очистки, в частности по сере, в отличие от низкотемпературных топливных элементов где сера и CO отравляют катализатор. Другое преимущество состоит в том, что SOFC при работе выделяет СО2 при высокой температуре. Что позволяет использоваться для повышения КПД микро газовую турбину, для производства электрической энергии или других вспомогательных нужд. Данные ЭУ разрабатываются различными компаниями, например, Wärtsilä.

Однако подобная система также требует утилизацию СО2.

3. ЭУ на основе аккумуляторной батареи без системы дозарядки в море

В настоящее время одним из конкурентов тепловым двигателям (ЭУ) являются оснащение ПЛ только аккумуляторной батарей большой емкости. Аналогичные конструкции применяются на подводных аппаратах. Теоретически наиболее простой тип энергетической установки, однако современные батареи имеют недостаточную емкость для обеспечения нахождения под водой продолжительное время (более 14 дней) при сравнительно высоком энергопотреблении (более 50 кВт*ч). Традиционная свинцово-кислотная батарея (и др.) не удовлетворяет требованиям для этих целей, однако с появлением альтернативных технологий, таких как батареи Зебры Роллс-ройса или литий-ионный аккумулятор, это стало выполнимо, кроме того, разрабатываются другие типы АБ: серно-натриевые, натриево-серебрянные, натрий-никельхлоридные, литиево-хлорные, литиево-серебрянные, литий-полимерные, никель-металгидридные и др. . Ориентировочная удельная емкость батарей представлена в таблице 1.

Таблица 1. Удельная массовая энергия различных типов аккумуляторных батарей

Тип батареи

Удельная емкость, Вт*ч/кг

Свинцово-кислотная

Никель-кадмиевая

Серебряно-цинковая

Sodium Sulphide(NaS)

Причем удельная энергоемкость батареи зависит от режима разрядки и может отличаться для свинцово-кислотных от 22 Вт*ч/кг при часовом режиме разрядки до 55 Вт*ч/кг при 1000 часовом режиме.

Для питания средств навигационной обстановки созданы батареи, которые имеют длительный период разряда, например, щелочной марганцево-цинковой электрохимической системы, но они имеют малую мощность.

4. ЭУ на основе высокометаллизированного топлива

В основном ведутся только научно-исследовательские работы по данному направлению. Достоинствами данной схемы является: высокая калорийность продуктов, взрыво/пожаробезопасность, возможность совместного или раздельного хранения продуктов без изменения их физико-химических свойств, продукты горения находятся в твердом состоянии, что облегчает систему утилизации. Существуют проекты с различными вариантами топлива и окислителя: Al + О2 ,Mg + CO2, Al + CrO3/S/Fe2O3, Li + CrO3, Li + SF6, причем топливо и окислитель могут находиться как в твердом, так и в жидком / газообразном состоянии . Проекты значительно конструктивно отличаются. Камеры сгорания могут быть: прямоточными, циклонными, слоевыми, барботажными/погружными, поверхностное горение. Преобразование тепловой энергии может производиться в ГТУ ЗЦ, ПТУ ЗЦ, на основе двигателя с внешним подводом тепла.

В работе указывается, что ЭУ на основе безгазового топлива может быть размещена в габаритах отсека существующих ПЛ, причем сравнительные оценки показали превосходство над базовым вариантом дизельной ПЛ. Однако практическое внедрение прошли только малые энергоустановки, например, в Advanced Lightweight Torpedo, данная ЭУ оснащена двигателем с циклом Ренкина и забортной водой в качестве теплоносителя, топливом является металлический литий, окислителем газообразный гексафторид серы.

5. ЭУ на основе «термитных смесей»

В основном разрабатываются малые и сверхмалые ЭУ, часть из которых применяется только для генерации тепла . Данные ЭУ могут оснащаться аккумуляторами тепла, то есть время работы ЭУ значительно превышает время горения термитного заряда. В зарядах используют «окислители второго рода», эти соединения требуют так много тепла для выделения из них кислорода, что смеси их с органическими веществами не способны к горению. Следует отметить, что интерес представляет не общее количество кислорода, содержащееся в окислителе, а то количество его, которое расходуется на окисление горючего. Количество кислорода, отдаваемого используемыми твердыми окислителями, составляет не более 52 % от веса соединения.

Сравнительный анализ производится на основе системы показателей качества и критериев эффективности . Оценка эффективности ЭУ представляет собой многокритериальную задачу с нелинейными целевыми функциями и ограничениями, решаемые методами нелинейного программирования. В целом оценку эффективности внедрения той или иной технологии можно делать только на основе корректных исходных данных. Кроме выбора критериев сравнения, необходимо выбирать весовые характеристики критериев. Причем, кроме характеристик самой ЭУ (энергетические, надежности, экономические, уровни полей, например, интенсивность шумоизлучения, напряженности электромагнитного поля, концентраций отработанных веществ, выделяемых в атмосферу при работ, ремонтопригодность установки . Важно также учитывать стоимость создания и эксплуатации береговой инфраструктуры.

Рецензенты:

Лоскутов А.Б., д.т.н., профессор, Нижегородский государственный технический университет им. Р.Е. Алексеева, г. Нижний Новгород.

Гущин В.Н., д.т.н., профессор, Нижегородский государственный технический университет им. Р.Е. Алексеева, г. Нижний Новгород.

Библиографическая ссылка

Романов А.Д., Чернышов Е.А., Романова Е.А. СРАВНИТЕЛЬНЫЙ ОБЗОР И ОЦЕНКА ЭФФЕКТИВНОСТИ ВОЗДУХОНЕЗАВИСИМЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК РАЗЛИЧНЫХ КОНСТРУКЦИЙ // Современные проблемы науки и образования. – 2013. – № 6.;
URL: http://science-education.ru/ru/article/view?id=10994 (дата обращения: 29.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Двигатель Стирлинга, принцип работы которого качественно отличается от привычного для всех ДВС, когда-то составлял последнему достойную конкуренцию. Однако на какое-то время о нем забыли. Как этот мотор используется сегодня, в чем заключается принцип его действия (в статье можно найти также чертежи двигателя Стирлинга, наглядно демонстрирующие его работу), и каковы перспективы применения в будущем, читайте ниже.

История

В 1816 году в Шотландии Робертом Стирлингом была запатентована названная сегодня в честь своего изобретателя. Первые двигатели горячего воздуха были изобретены еще до него. Но Стирлинг добавил в устройство очиститель, который в технической литературе называется регенератором, или теплообменником. Благодаря ему производительность мотора возрастала при удерживании агрегата в тепле.

Двигатель признали наиболее прочной паровой машиной из имеющихся на тот момент, так как он никогда не взрывался. До него на других моторах такая проблема возникала часто. Несмотря на быстрый успех, в начале двадцатого столетия от его развития отказались, так как он стал менее экономичным, по сравнению с появившимися тогда другими двигателями внутреннего сгорания и электродвигателями. Однако Стирлинг еще продолжал применяться в некоторых производствах.

Двигатель внешнего сгорания

Принцип работы всех тепловых моторов заключается в том, что для получения газа в расширенном состоянии необходимы большие механические усилия, чем при сжатии холодного. Для наглядной демонстрации этого можно провести опыт с двумя кастрюлями, наполненными холодной и горячей водой, а также бутылкой. Последнюю опускают в холодную воду, затыкают пробкой, затем переносят в горячую. При этом газ в бутылке начнет выполнять механическую работу и вытолкнет пробку. Первый двигатель внешнего сгорания основывался на этом процессе полностью. Правда, позже изобретатель понял, что часть тепла можно применять для подогрева. Таким образом, производительность значительно возросла. Но даже это не помогло двигателю стать распространенным.

Позже Эриксон, инженер из Швеции, усовершенствовал конструкцию, предложив охлаждать и нагревать газ при постоянном давлении вместо объема. В результате немало экземпляров стало использоваться для работы в шахтах, на судах и в типографиях. Но для экипажей они оказались слишком тяжелыми.

Двигатели внешнего сгорания от Philips

Подобные моторы бывают следующих типов:

  • паровой;
  • паротурбинный;
  • Стирлинга.

Последний вид не стали развивать из-за небольшой надежности и остальных не самых высоких показателей по сравнению с появившимися другими типами агрегатов. Однако в 1938 году компания Philips возобновила работу. Двигатели стали служить для приводов генераторов в неэлектрофицированных районах. В 1945 году инженеры компании нашли им обратное применение: если вал раскручивать электромотором, то охлаждение головки цилиндров доходит до минус ста девяносто градусов по Цельсию. Тогда решено было применять в холодильных установках усовершенствованный двигатель Стирлинга.

Принцип работы

Действие мотора заключается в работе по термодинамическим циклам, в которых при разной температуре происходит сжатие и расширение. При этом регулирование потоком рабочего тела реализуется за счет изменяющегося объема (или давления - в зависимости от модели). Таков принцип работы большинства подобных машин, которые могут иметь разные функции и конструктивные схемы. Двигатели могут быть поршневыми или роторными. Машины с их установками работают в качестве тепловых насосов, холодильников, генераторов давления и так далее.

Помимо этого, есть моторы с открытым циклом, где регулирование потоком реализуется посредством клапанов. Именно их называют двигателями Эриксона, кроме общего названия имени Стирлинга. В ДВС полезная работа осуществляется после предварительного сжатия воздуха, впрыска топлива, нагрева полученной смеси вперемешку со сгоранием и расширения.

Двигатель Стирлинга принцип работы имеет такой же: при низкой температуре происходит сжатие, а при высокой - расширение. Но по-разному осуществляется нагрев: тепло подводится через стенку цилиндра извне. Поэтому он и получил название двигателя внешнего сгорания. Стирлинг применял периодическое изменение температуры с вытеснительным поршнем. Последний перемещает газ с одной полости цилиндра в другую. С одной стороны, температура постоянно низкая, а с другой - высокая. При передвижении поршня вверх газ перемещается из горячей в холодную полость, а вниз - возвращается в горячую. Сначала газ отдает много тепла холодильнику, а затем от нагревателя получает столько же, сколько отдал. Между нагревателем и холодильником размещается регенератор - полость, наполненная материалом, которому газ отдает тепло. При обратном течении регенератор возвращает его.

Система вытеснителя соединена с рабочим поршнем, сжимающим газ в холоде и позволяющим расширяться в тепле. За счет сжатия в более низкой температуре происходит полезная работа. Вся система проходит четыре цикла при прерывистых движениях. Кривошипно-шатунный механизм при этом обеспечивает непрерывность. Поэтому резких границ между стадиями цикла не наблюдается, а Стирлинга не уменьшается.

Учитывая все вышесказанное, напрашивается вывод, что этот двигатель является поршневой машиной с внешним подводом тепла, где рабочее тело не покидает замкнутое пространство и не заменяется. Чертежи двигателя Стирлинга хорошо иллюстрируют устройство и принцип его действия.

Детали работы

Солнце, электричество, ядерная энергия или любой другой источник тепла может подводить энергию в двигатель Стирлинга. Принцип работы его тела заключается в применении гелия, водорода или воздуха. Идеальный цикл обладает термическим максимально возможным КПД, равным от тридцати до сорока процентов. Но с эффективным регенератором он сможет работать и с более высоким КПД. Регенерацию, нагрев и охлаждение обеспечивают встроенные теплообменники, работающие без масел. Следует отметить, что смазки двигателю нужно очень мало. Среднее давление в цилиндре составляет обычно от 10 до 20 МПа. Поэтому здесь требуется отличная уплотнительная система и возможность попадания масла в рабочие полости.

Сравнительная характеристика

В большинстве работающих сегодня двигателей подобного рода используется жидкое топливо. При этом непрерывное давление легко контролировать, что способствует снижению уровня выбросов. Отсутствие клапанов обеспечивает бесшумную работу. Мощность с массой сопоставимы моторам с турбонаддувом, а удельная мощность, получаемая на выходе, равна показателю дизельного агрегата. Скорость и крутящий момент не зависят друг от друга.

Затраты на производство двигателя гораздо выше, чем на ДВС. Но при эксплуатации получается обратный показатель.

Преимущества

Любая модель двигателя Стирлинга имеет много плюсов:

  • КПД при современном проектировании может доходить до семидесяти процентов.
  • В двигателе нет системы высоковольтного зажигания, распределительного вала и клапанов. Его не нужно будет регулировать в течение всего срока эксплуатации.
  • В Стирлингах нет того взрыва, как в ДВС, который сильно нагружает коленвал, подшипники и шатуны.
  • В них не бывает того эффекта, когда говорят, что «двигатель заглох».
  • Благодаря простоте прибора его можно эксплуатировать в течение длительного времени.
  • Он может работать как на дровах, так и с ядерным и любым другим видом топлива.
  • Сгорание происходит вне мотора.

Недостатки

Применение

В настоящее время двигатель Стирлинга с генератором используют во многих областях. Это универсальный источник электрической энергии в холодильниках, насосах, на подводных лодках и солнечных электрических станциях. Именно благодаря применению различного вида топлива имеется возможность его широкого использования.

Возрождение

Эти двигатели снова стали развиваться благодаря компании Philips. В середине двадцатого века с ней заключила договор General Motors. Она вела разработки для применения Стирлингов в космических и подводных устройствах, на судах и автомобилях. Вслед за ними другая компания из Швеции, United Stirling, стала заниматься их развитием, включая и возможное использование на

Сегодня линейный двигатель Стирлинга применяется на установках подводных, космических и солнечных аппаратов. Большой интерес к нему вызван из-за актуальности вопросов ухудшения экологической обстановки, а также борьбы с шумом. В Канаде и США, Германии и Франции, а также Японии идут активные поиски по развитию и совершенствованию его использования.

Будущее

Явные преимущества, которые имеет поршневой и Стирлинга, заключающиеся в большом ресурсе работы, применении разного топлива, бесшумности и малой токсичности, делают его очень перспективным на фоне мотора внутреннего сгорания. Однако с учетом того, что ДВС на протяжении всего времени совершенствовали, он не может быть легко смещен. Так или иначе, именно такой двигатель сегодня занимает лидирующие позиции, и сдавать их в ближайшее время не намерен.

Российские разработчики приступили к испытаниям анаэробной энергетической установки для перспективных дизель-электрических подводных лодок; испытания проходят наземные прототипы. Об этом, как сообщает РИА Новости, заявил президент Объединенной судостроительной корпорации Алексей Рахманов. По его словам, в ближайшее время разработчики — центральное конструкторское бюро морской техники «Рубин», морское бюро машиностроения «Малахит» и Крыловский государственный научный центр — также планируют создать морской прототип анаэробной установки.

Современные дизель-электрические подводные лодки имеют несколько преимуществ перед более крупными атомными подводными кораблями. Одним из главных таких преимуществ является практически полная бесшумность хода в подводном положении, поскольку в этом случае за движение корабля отвечают лишь тихие электромоторы, питающиеся от аккумуляторных батарей. Перезарядка этих батарей производится от дизельных генераторов в надводном положении или на глубине, с которой возможно выставить шноркель, специальную трубу, по которой воздух может подаваться к генераторам.

К недостаткам обычных дизель-электрических подводных лодок относится относительно небольшое время, которое корабль может провести под водой. В лучшем случае оно может достигать трех недель, но обычно не превышает 7-10 дней. После этого подлодке необходимо всплыть и запустить дизельные генераторы. Анаэробная энергетическая установка, для работы которой не нужен забортный воздух, позволит неатомной подводной лодке находиться в подводном положении существенно дольше.

Испытания российской анаэробной энергетической установки для подводных лодок планируется завершить до конца 2021 года. Параллельно с ее разработкой и испытаниями специалисты занимаются оценкой экономической составляющей проекта — насколько будет дорогой установка в серийном производстве, в какую сумму будет обходиться ее эксплуатация и обслуживание, а также многие другие аспекты. «У любой работы должен быть экономический смысл. Как только мы его увидим, будем реализовывать», — ответил Рахманов.

Перспективная российская анаэробная энергетическая установка будет использовать для работы водород высокой степени очистки. Этот газ планируется получать на борту корабля из дизельного топлива методом риформинга, то есть преобразования топлива в водородсодержащий газ и ароматические углеводороды, которые затем будут проходить через установку выделения водорода. Затем водород будет подаваться в водородно-кислородные топливные элементы, где и будет вырабатываться электричество для двигателей и бортовых систем.

Топливные элементы разрабатываются Центральным научно-исследовательским институтом судовой электротехники и технологии. Водородные батареи, вырабатывающие электричество за счет реакции водорода и кислорода, получили название БТЭ-50К-Э. Мощность одного такого элемента составляет 50 киловатт. Мощность усовершенствованной батареи составит 100 киловатт. Новая батарея будет входить в состав энергетических модулей перспективных неатомных подлодок мощностью 250-450 киловатт.

Помимо самих электрохимических элементов в состав таких модулей будут входить конверторы углеводородного топлива. Именно в них и будет проходить процесс риформинга дизельного топлива. Конвертор углеводородного топлива пока еще находится на стадии разработки.

В конце сентября судостроительный завод «Адмиралтейские верфи» спустил на воду дизель-электрическую подводную лодку «Кронштадт», первый серийный корабль проекта 677 «Лада». Ожидается, что подводная лодка пройдет полную серию испытаний и будет передана российскому флоту до конца 2019 года. Проект 677 в перспективе предусматривает установку на подлодки анаэробных энергетических установок. Кроме того, такие энергетические установки планируется использовать на перспективных дизель-электрических подводных лодках пятого поколения проекта «Калина».

МОСКВА, 23 авг — РИА Новости, Андрей Коц. Дизель-электрические подводные лодки (ДЭПЛ) незаменимы в прибрежных и мелководных районах, куда далеко не всегда могут пройти их более тяжелые атомные собратья. Современные российские ДЭПЛ — грозное и универсальное оружие, но по сравнению с атомными подводными лодками у них есть один серьезный недостаток. Если атомоход способен находиться под водой сколь угодно долго, пока не закончится продовольствие, то дизельные субмарины вынуждены периодически всплывать для зарядки аккумуляторных батарей генераторами. Впрочем, благодаря воздухонезависимым энергетическим установкам (ВНЭУ) некоторые современные "дизелюхи" обходятся и без этого.

Без всплытия

Любая субмарина, вне зависимости от конструкции, водоизмещения, вооружения и выучки экипажа, в надводном положении беззащитна, как котенок перед стаей собак. Лодка не располагает значимой корабельной артиллерией, способной дать отпор скоростным катерам абордажных команд противника. Не сможет отбиться от налета противолодочной авиации или противокорабельных ракет. И даже если успеет срочно погрузиться, вряд ли уйдет от "загонщиков", уже точно определивших ее координаты. В мирное время это грозит срывом "автономки". В военное — гибелью лодки и ее экипажа.

Моторы неатомной подводной лодки приводятся в движение аккумуляторными батареями, заряда которых хватает максимум на четверо суток, если субмарина идет со скоростью до пяти узлов. Если же дана команда "Полный вперед!", батареи сядут через несколько часов. Их максимальная зарядка бортовыми дизель-генераторами занимает около двух суток, для этого необходим кислород, поэтому лодка вынуждена всплывать. Конечно, можно использовать режим работы двигателя под водой (РДП). В этом случае подлодка поднимает над поверхностью воды трубу-шнорхель, через которую и поступает воздух. Однако способ, активно использовавшийся еще в середине прошлого века, сегодня резко повышает вероятность обнаружения субмарины радиолокационными, инфракрасными, оптико-электронными и акустическими средствами противника.

Воздухонезависимому, или анаэробному, двигателю прямой доступ к атмосфере не требуется. В настоящее время в мире существует четыре основных типа ВНЭУ: дизельный двигатель замкнутого цикла, двигатель Стирлинга, топливные элементы (электрохимический генератор) и паротурбинная установка замкнутого цикла. Они должны соответствовать следующим требованиям: низкий уровень шумности, малое тепловыделение, приемлемые массогабаритные характеристики, простота и безопасность эксплуатации, большой ресурс и невысокая стоимость.

Важно отметить, что технология изготовления ВНЭУ очень сложная и наукоемкая. В мире не так много государств, освоивших ее полностью. ВМС США темой ВНЭУ не интересовались, предпочтя перевести весь подводный флот на атомную энергию. По тому же пути пошли и французы, построившие тем не менее экспортные субмарины типа "Скорпен". Эти небольшие лодки работают от турбин по замкнутому циклу, используя этанол и жидкий кислород. Автономность без всплытия — около трех недель.

Немцы приняли другую стратегию и в начале нулевых представили серию подлодок проекта U-212/214. У этих субмарин "гибридная" энергетическая установка: в режиме РДП или для хода в надводном положении аккумуляторы заряжаются дизельным генератором мощностью 1050 киловатт. А под водой для экономичного хода в дело вступает воздухонезависимый двигатель Siemens SINAVY Permasin. Его приводит в действие энергетическая установка из девяти протон-обменных топливных элементов, включающих цистерны с криогенным кислородом и емкости с гидридом металла. Эти элементы и обеспечивают вращение гребных винтов.

Роль топливных элементов

Сегодня в России нет дизель-электрических подводных лодок с воздухонезависимой энергетической установкой, однако они должны появиться в ближайшие годы. Представители Минобороны неоднократно утверждали, что первые ВНЭУ получат субмарины проекта 677 "Лада". Тем не менее принятый в строй "Санкт-Петербург" и строящиеся "Кронштадт" и "Великие Луки" по-прежнему полностью зависят от дизель-генераторов. А вот следующую лодку проекта, которую спустят на воду до 2025 года, уже оснастят анаэробной энергетической установкой собственного производства. Большинство данных об этой разработке строго засекречены, но известно, что в основу ее конструкции заложен паровой реформинг с электрохимическим генератором на твердотельных элементах.

"Эксперименты с ВНЭУ проводили еще в Советском Союзе, — рассказал РИА Новости главный редактор журнала "Арсенал Отечества" Виктор Мураховский. — Создать новую силовую установку на современной элементной базе и соответствующую требованиям сегодняшнего дня достаточно сложно. Раньше она должна была обеспечивать запас окисляющего компонента для работы двигателя внутреннего сгорания. Сейчас же подход другой — питание силовой установки топливными элементами. Главный мировой тренд — полный переход на электродвижение без использования дизельных генераторов. В этом случае топливные элементы с большой энергетической емкостью будут напрямую питать электродвигатели. Необходимости всплывать просто не возникнет".

Конструкторское бюро "Рубин", к слову, сообщало о готовности представить воздухонезависимую энергетическую установку для неатомных подводных лодок в 2021-2022 годах. А в апреле текущего года макетный образец ВНЭУ с газотурбинным двигателем замкнутого цикла успешно испытало КБ "Малахит". Новинку предполагается использовать в малых подводных лодках, которые пока существуют только в виде макетов.

Импортозамещение

"Мы разработали линейку малых подводных лодок водоизмещением от двухсот до тысячи тонн, — сообщил РИА Новости ведущий конструктор КБ "Малахит" Игорь Караваев. — Одно из главных их достоинств — применение ВНЭУ. Эти лодки смогут комфортно себя чувствовать в проливных зонах, мелководных районах, гаванях и даже будут способны заходить во вражеские порты и на военно-морские базы. Высокая скрытность, небольшие габариты и возможность неделями оставаться под водой без всплытия делает их идеальными разведчиками и позволяет наносить внезапный удар по кораблям и ключевым объектам прибрежной инфраструктуры".

По словам Виктора Мураховского, чтобы выйти на собственное серийное производство воздухонезависимых энергетических установок и массово ставить их на подводные лодки, необходимо формировать гигантский научно-технический задел для создания топливных элементов, которые будут питать электродвигатели подводного флота. В качестве более дешевой и простой альтернативы он рассматривает разработку перспективных литий-полимерных аккумуляторов, работающих на одной "подзарядке" гораздо дольше, чем имеющиеся сегодня в ВМФ аналоги. "Однако их производство, судя по всему, придется начинать с нуля, потому что на Западе нам такие технологии никто не продаст. А если и продаст, то в один прекрасный день может просто перекрыть поставки", — добавил эксперт.

Проект 677 «Лада» - дизель-электрическая подводная лодка типа «Санкт-Петербург» / Фото: upload.wikimedia.org

Опытный образец воздухонезависимой энергетической установки (ВНЭУ) для российских неатомных подлодок создан и уже работает, сообщил журналистам в пятницу гендиректор ЦКБ "Рубин" Игорь Вильнит.

Главнокомандующий ВМФ РФ адмирал Виктор Чирков сообщил в августе журналистам, что с 2017 года Россия приступает к строительству неатомных подлодок нового поколения с анаэробной установкой.

Главное преимущество ВНЭУ — увеличение скрытности подводной лодки. Субмарина получает возможность находиться под водой без всплытия для зарядки батарей. Планируется, что в 2015 году первая ВНЭУ будет установлена на подводной лодке проекта 677 "Лада", сообщает РИА Новости .

Техническая справка

Анаэробные энергетические установки на основе двигателей Стирлинга

Современные тенденции развития подводного флота свидетельствуют о необходимости оснащения неатомных подводных лодок (НАПЛ) воздухонезависимыми (анаэробными) вспомогательными энергетическими установками.

Наиболее перспективным направлением в области создания анаэробных энергетических установок является использование в них двигателей Стирлинга. Б есшумность в работе, высокий к.п.д. (до 40%), многотопливность и значительный моторесурс современных двигателей Стирлинга (около 60 тыс. часов), позволяют рекомендовать его как универсальный двигатель для всех типов НАПЛ - малого, среднего и большого водоизмещения, а также для большинства типов подводных аппаратов, использование которых возможно в интересах геологоразведки, освоения континентального шельфа, экологического монито­ ринга, ликвидации последствий аварий на море и т.д.

Существующие типы анаэробных установок для подводных лодок


Инновационно-исследовательский центр «Стирлинг-технологии» является единственной в России компанией, специалисты которой имеют многолетний опыт проектирования анаэробных установок с двигателями Стирлинга для специальных объектов различного функционального назначения: объектов космического назначения, подводных технических средств и др. Технические решения защищены более 40 патентами РФ.

Специалистами компании разработана анаэробная энергетическая установка для перспективной подводной лодки XXI века на основе двигателя Стирлинга и сжиженного природного газа в качестве горючего.


Перспектиная неатомная подводная лодка с анаэробной установкой на основе двигателя Стирлинга и криогенных компонентов топлива (жидкий метан, жидкий кислород)

Анаэробные энергетические установки на основе двигателей Стирлинга, созданные специалистами ООО «ИИЦ «Стирлинг-технологии» защищены патентами РФ. ООО «ИИЦ «Стирлинг-технологии» владеет исключительными правами на использование данных технических решений на территории Российской Федерации.

Похожие статьи