Что такое биохимия? Профессия Биохимик. Описание профессии

БИОХИМИЯ (биологическая химия), наука, изучающая химический состав живых объектов, строение и пути превращения природных соединений в клетках, органах, тканях и целых организмах, а также физиологическую роль отдельных химических превращений и закономерности их регулирования. Термин «биохимия» введён немецким учёным К. Нейбергом в 1903 году. Предмет, задачи и методы исследования биохимии относятся к изучению всех проявлений жизни на молекулярном уровне; в системе естественных наук она занимает самостоятельную область, относящуюся в равной степени как к биологии, так и к химии. Биохимию традиционно подразделяют на статическую, занимающуюся анализом строения и свойств всех органических и неорганических соединений, входящих в состав живых объектов (клеточных органелл, клеток, тканей, органов); динамическую, изучающую всю совокупность превращений отдельных соединений (обмен веществ и энергии); функциональную, исследующую физиологическую роль молекул отдельных соединений и их превращений при определённых проявлениях жизнедеятельности, а также сравнительную и эволюционную биохимию, определяющую сходство и различия состава и обмена веществ у организмов, принадлежащих к разным таксономическим группам. В зависимости от объекта исследования выделяют биохимию человека, растений, животных, микроорганизмов, крови, мышц, нейрохимию и пр., а по мере углубления знаний и их специализации самостоятельными разделами становятся энзимология, изучающая строение и механизм действия ферментов, биохимия углеводов, липидов, нуклеиновых кислот, мембран. Исходя из целей и задач, биохимию часто делят на медицинскую, сельскохозяйственную, техническую, биохимию питания и пр.

Формирование биохимии в 16—19 веках. Становление биохимии как самостоятельной науки тесно связано с развитием других естественнонаучных дисциплин (химия, физика) и медицины. Существенный вклад в развитие химии и медицины в 16 - 1-й половине 17 века внесла ятрохимия. Её представители исследовали пищеварительные соки, жёлчь, процессы брожения и др., ставились вопросы о превращениях веществ в живых организмах. Парацелъс пришёл к выводу, что процессы, происходящие в организме человека, являются химическими процессами. Я. Сильвиус большое значение придавал правильному соотношению в организме человека кислот и щелочей, нарушение которого, как он полагал, лежит в основе многих заболеваний. Я. Б. ван Гельмонт пытался установить, за счёт чего создаётся вещество растений. В начале 17 века итальянский учёный С. Санторио с помощью специально сконструированной им камеры пытался установить соотношение количества принимаемой пищи и выделений человека.

Научные основы биохимии были заложены во 2-й половине 18 века, чему способствовали открытия в области химии и физики (в том числе открытие и описание ряда химических элементов и простых соединений, формулировка газовых законов, открытие законов сохранения и превращения энергии), использование химических методов анализа в физиологии. В 1770-х годах А. Лавуазье сформулировал идею о сходстве процессов горения и дыхания; установил, что дыхание человека и животных с химической точки зрения представляет собой процесс окисления. Дж. Пристли (1772) доказал, что растения выделяют кислород, необходимый для жизни животных, а голландский ботаник Я. Ингенхауз (1779) установил, что очищение «испорченного» воздуха производится только зелёными частями растений и только на свету (этими работами было положено начало изучению фотосинтеза). Л. Спалланцани предложил рассматривать пищеварение как сложную цепь химических превращений. К началу 19 века из природных источников был выделен ряд органических веществ (мочевина, глицерин, лимонная, яблочная, молочная и мочевая кислоты, глюкоза и др.). В 1828 году Ф. Вёлер впервые осуществил химический синтез мочевины из цианата аммония, развенчав тем самым господствовавшее до этого времени представление о возможности синтеза органических соединений только живыми организмами и доказав несостоятельность витализма. В 1835 году И. Берцелиус ввёл понятие катализа; он постулировал, что брожение - каталитический процесс. В 1836 году голландский химик Г. Я. Мульдер впервые предложил теорию строения белковых веществ. Постепенно происходило накопление данных о химическом составе растительных и животных организмов и протекающих в них химических реакциях, к середине 19 века описан ряд ферментов (амилаза, пепсин, трипсин и др.). Во 2-й половине 19 века были получены некоторые сведения о структуре и химических превращениях белков, жиров и углеводов, фотосинтезе. В 1850-55 годах К. Бернар выделил гликоген из печени и установил факт его превращения в глюкозу, поступающую в кровь. Работами И. Ф. Мишера (1868) было положено начало изучению нуклеиновых кислот. В 1870 году Ю. Либих сформулировал химическую природу действия ферментов (основные её принципы сохраняют своё значение и в наши дни); в 1894 году Э. Г. Фишер впервые использовал ферменты в качестве биокатализаторов химических реакций; он пришёл к заключению, что субстрат соответствует ферменту как «ключ замку». Л. Пастер сделал вывод о том, что брожение - биологический процесс, для осуществления которого необходимы живые дрожжевые клетки, отвергнув тем самым химическую теорию брожения (Й. Берцелиус, Э. Митчерлих, Ю. Либих), в соответствии с которой сбраживание сахаров - сложная химическая реакция. Ясность в этот вопрос была окончательно внесена после того, как Э. Бухнер (1897, совместно с братом, Г. Бухнером) доказал способность экстракта клеток микроорганизмов вызывать брожение. Их работы способствовали познанию природы и механизма действия ферментов. Вскоре А. Гарден установил, что брожение сопровождается включением фосфата в соединения углеводов, что послужило толчком к выделению и идентификации фосфорных эфиров углеводов и пониманию их ключевой роли в биохимических превращениях.

Развитие биохимии в России в этот период связано с именами А. Я. Данилевского (изучал белки и ферменты), М. В. Ненцкого (исследовал пути образования мочевины в печени, структуру хлорофилла и гемоглобина), В. С. Гулевича (биохимия мышечной ткани, экстрактивные вещества мышц), С. Н. Виноградского (открыл хемосинтез у бактерий), М. С. Цвета (создал метод хроматографического анализа), А. И. Баха (перекисная теория биологического окисления) и др. Российский врач Н. И. Лунин проложил путь к изучению витаминов, экспериментально доказав (1880) необходимость для нормального развития животных особых веществ (помимо белков, углеводов, жиров, солей и воды). В конце 19 века сформировались представления о сходстве основных принципов и механизмов химических превращений у различных групп организмов, а также об особенностях их обмена веществ (метаболизма).

Накопление большого количества сведений относительно химического состава растительного и животных организмов и протекающих в них химических процессов привело к необходимости систематизации и обобщения данных. Первой работой в этом направлении стал учебник И. Зимона («Handbuch der angewandten medicinischen Chemie», 1842). В 1842 году появилась монография Ю. Либиха «Die Tierchemie oder die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie». Первый отечественный учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 году. Периодические издания регулярно начали выходить с 1873 года. Во 2-й половине 19 века на медицинских факультетах многих российских и зарубежных университетов были организованы специальные кафедры (первоначально их называли кафедрами медицинской или функциональной химии). В России впервые кафедры медицинской химии были созданы А. Я. Данилевским в Казанском университете (1863) и А. Д. Булыгинским (1864) на медицинском факультете Московского университета.

Биохимия в 20 веке . Становление современной биохимии произошло в 1-й половине 20 века. Его начало отмечено открытием витаминов и гормонов, определена их роль в организме. В 1902 году Э. Г. Фишер первым синтезировал пептиды, установив тем самым природу химической связи между аминокислотами в белках. В 1912 году польский биохимик К. Функ выделил вещество, предотвращающее развитие полиневрита, и назвал его витамином. После этого постепенно были открыты многие витамины, и витаминология стала одним из разделов биохимии, а также науки о питании. В 1913 году Л. Михаэлисом и М. Ментен (Германия) были разработаны теоретические основы ферментативных реакций, сформулированы количественные закономерности биологического катализа; установлена структура хлорофилла (Р. Вильштеттер, А. Штоль, Германия). В начале 1920-х годов А. И. Опарин сформулировал общий подход к химическому пониманию проблемы возникновения жизни. Впервые были получены в кристаллическом виде ферменты уреаза (Дж. Самнер, 1926), химотрипсин, пепсин и трипсин (Дж. Нортроп, 1930-е годы), что послужило доказательством белковой природы ферментов и толчком для быстрого развития энзимологии. В эти же годы Х. А. Кребс описал механизм синтеза мочевины у позвоночных в ходе орнитинового цикла (1932); А. Е. Браунштейн (1937, совместно с М. Г. Крицман) открыл реакцию переаминирования как промежуточное звено биосинтеза и распада аминокислот; О. Г. Варбург выяснил природу фермента, реагирующего с кислородом в тканях. В 1930-х годах завершился основной этап изучения природы основополагающих биохимических процессов. Установлена последовательность реакций распада углеводов в ходе гликолиза и брожения (О. Мейергоф, Я. О. Парнас), превращения пировиноградной кислоты в циклах ди- и трикарбоновых кислот (А. Сент-Дъёрдъи, Х. А. Кребс, 1937), открыто фоторазложение воды (Р. Хилл, Великобритания, 1937). Работами В. И. Палладина, А. Н. Баха, Г. Виланда, шведского биохимика Т. Тунберга, О. Г. Варбурга и английского биохимика Д. Кейлина заложены основы современных представлений о внутриклеточном дыхании. Из мышечных экстрактов были выделены аденозинтрифосфат (АТФ) и креатинфосфат. В СССР работами В. А. Энгельгардта (1930) и В. А. Белицера (1939) по окислительному фосфорилированию и количественной характеристике этого процесса было положено начало современной биоэнергетике. Позднее Ф. Липман разработал представления о богатых энергией фосфорных соединениях, установил центральную роль АТФ в биоэнергетике клетки. Открытие ДНК у растений (российские биохимики А. Н. Белозерский и А. Р. Кизель, 1936) способствовало признанию биохимического единства растительного и животного мира. В 1948 году А. А. Красновский открыл реакцию обратимого фотохимического восстановления хлорофилла, значительные успехи были достигнуты в выяснении механизма фотосинтеза (М. Калвин).

Дальнейшее развитие биохимии связано с изучением структуры и функции ряда белков, разработкой основных положений теории ферментативного катализа, установлением принципиальных схем обмена веществ и др. Прогресс биохимии во 2-й половине 20 века в значительной степени обусловлен развитием новых методов. Благодаря усовершенствованию методов хроматографии и электрофореза стала возможной расшифровка последовательностей аминокислот в белках и нуклеотидов в нуклеиновых кислотах. Рентгеноструктурный анализ позволил определить пространственную структуру молекул ряда белков, ДНК и других соединений. С помощью электронной микроскопии были открыты ранее неизвестные клеточные структуры, благодаря ультрацентрифугированию выделены различные клеточные органеллы (в том числе ядро, митохондрии, рибосомы); использование изотопных методов дало возможность понять сложнейшие пути превращения веществ в организмах и т. д. Важное место в биохимических исследованиях заняли различные виды радио- и оптической спектроскопии, масс-спектроскопии. Л. Полинг (1951, совместно с Р. Кори) сформулировал представления о вторичной структуре белка, Ф. Сенгер расшифровал (1953) структуру белкового гормона инсулина, а Дж. Кендрю (1960) определил пространственную структуру молекулы миоглобина. Благодаря усовершенствованию методов исследования было внесено много нового в представления о структуре ферментов, формировании их активного центра, об их работе в составе сложных комплексов. После установления роли ДНК как вещества наследственности (О. Эвери, 1944) особое внимание обращается на нуклеиновые кислоты и их участие в процессе передачи признаков организма по наследству. В 1953 году Дж. Уотсон и Ф. Крик предложили модель пространственной структуры ДНК (так называемая двойная спираль), увязав её строение с биологической функцией. Это событие явилось переломным моментом в развитии биохимии и биологии в целом и послужило основанием для выделения из биохимии новой науки - молекулярной биологии. Исследования по структуре нуклеиновых кислот, их роли в биосинтезе белка и явлениях наследственности связаны также с именами Э. Чаргаффа, А. Корнберга, С. Очоа, Х. Г. Корана, Ф. Сенгера, Ф. Жакоба и Ж. Моно, а также российских учёных А. Н. Белозерского, А. А. Баева, Р. Б. Хесина-Лурье и др. Изучение структуры биополимеров, анализ действия биологически активных низкомолекулярных природных соединений (витамины, гормоны, алкалоиды, антибиотики и др.) привели к необходимости установления связи между строением вещества и его биологической функцией. В связи с этим получили развитие исследования на грани биологической и органической химии. Это направление стало называться биоорганической химией. В 1950-х годах на стыке биохимии и неорганической химии как самостоятельная дисциплина сформировалась бионеорганическая химия.

К числу несомненных успехов биохимии относятся: открытие участия биологических мембран в генерации энергии и последующие исследования в области биоэнергетики; установление путей превращения наиболее важных продуктов обмена веществ; познание механизмов передачи нервного возбуждения, биохимических основ высшей нервной деятельности; выяснение механизмов передачи генетической информации, регуляции важнейших биохимических процессов в живых организмах (клеточная и межклеточная сигнализация) и многие другие.

Современное развитие биохимии. Биохимия является неотъемлемой частью физико-химической биологии - комплекса взаимосвязанных и тесно переплетённых между собой наук, который включает также биофизику, биоорганическую химию, молекулярную и клеточную биологию и др., изучающих физические и химические основы живой материи. Биохимические исследования охватывают широкий круг проблем, решение которых осуществляется на стыке нескольких наук. Например, биохимическая генетика изучает вещества и процессы, участвующие в реализации генетической информации, а также роль различных генов в регуляции биохимических процессов в норме и при различных генетических нарушениях метаболизма. Биохимическая фармакология исследует молекулярные механизмы действия лекарственных средств, способствуя разработке более совершенных и безопасных препаратов, иммунохимия - структуру, свойства и взаимодействия антител (иммуноглобулинов) и антигенов. На современном этапе биохимия характеризуется активным привлечением широкого методического арсенала смежных дисциплин. Даже такой традиционный раздел биохимии, как энзимология, при характеристике биологической роли конкретного фермента, редко обходится без направленного мутагенеза, выключения гена, кодирующего исследуемый фермент в живых организмах, или, наоборот, его повышенной экспрессии.

Хотя основные пути и общие принципы обмена веществ и энергии в живых системах можно считать установленными, множество деталей метаболизма и особенно его регуляции остаются неизвестными. Особенно актуально выяснение причин нарушений метаболизма, приводящих к тяжёлым «биохимическим» болезням (различные формы диабета, атеросклероз, злокачественное перерождение клеток, нейродегенеративные заболевания, циррозы и многие др.), и научное обоснование его направленной коррекции (создание лекарственных средств, диетические рекомендации). Использование биохимических методов позволяет выявить важные биологические маркеры различных заболеваний и предложить эффективные способы их диагностики и лечения. Так, определение в крови кардиоспецифичных белков и ферментов (тропонин Т и изофермент креатинкиназы миокарда) позволяет осуществлять раннюю диагностику инфаркта миокарда. Важная роль отводится биохимии питания, изучающей химические и биохимические компоненты пищи, их ценность и значение для здоровья человека, влияние хранения пищевых продуктов и их обработки на качество пищи. Системный подход в изучении всей совокупности биологических макромолекул и низкомолекулярных метаболитов конкретной клетки, ткани, органа или организма определённого вида привёл к появлению новых дисциплин. К их числу относятся геномика (исследует всю совокупность генов организмов и особенности их экспрессии), транскриптомика (устанавливает количественный и качественный состав молекул РНК), протеомика (анализирует всё многообразие белковых молекул, характерных для организма) и метаболомика (изучает все метаболиты организма или его отдельных клеток и органов, образующиеся в процессе жизнедеятельности), активно использующие биохимическую стратегию и биохимические методы исследований. Получила развитие прикладная область геномики и протеомики - биоинженерия, связанная с направленным конструированием генов и белков. Названные выше направления порождены в равной мере биохимией, молекулярной биологией, генетикой и биоорганической химией.

Научные учреждения, общества и периодические издания . Научные исследования в области биохимии проводятся во многих специализированных научно-исследовательских институтах и лабораториях. В России они находятся в системе РАН (в том числе Институт биохимии, Институт эволюционной физиологии и биохимии, Институт физиологии растений, Институт биохимии и физиологии микроорганизмов, Сибирский институт физиологии и биохимии растений, Институт молекулярной биологии, Институт биоорганической химии), отраслевых академий (в том числе Институт биомедхимии РАМН), ряда министерств. Работы по биохимии ведутся в лабораториях и на многочисленных кафедрах биохимических вузов. Специалистов-биохимиков и за рубежом, и в Российской Федерации готовят на химических и биологических факультетах университетов, имеющих специальные кафедры; биохимиков более узкого профиля - в медицинских, технологических, сельскохозяйственных и других вузах.

В большинстве стран существуют научные биохимические общества, объединённые в Европейскую федерацию биохимиков (Federation of European Biochemical Societies, FEBS) и в Международный союз биохимиков и молекулярных биологов (International Union of Biochemistry, IUBMB). Эти организации собирают симпозиумы, конференции, а также конгрессы. В России Всесоюзное биохимическое общество с многочисленными республиканскими и городскими отделениями было создано в 1959 году (с 2002 года Общество биохимиков и молекулярных биологов).

Велико количество периодических изданий, в которых публикуются работы по биохимии. Наиболее известны: «Journal of Biological Chemistry» (Balt., 1905), «Biochemistry» (Wash., 1964), «Biochemical Journal» (L., 1906), «Phytochemistry» (Oxf.; N. Y., 1962), «Biochimica et Biophisica Acta» (Amst., 1947) и многие др.; ежегодники: «Annual Review of Biochemistry» (Stanford, 1932), «Advances in Enzymology and Related Subjects of Biochemistry» (N. Y., 1945), «Advances in Protein Chemistry» (N.Y., 1945), «Febs Journal» (первоначально «European Journal of Biochemistry», Oxf., 1967), «Febs letters» (Amst., 1968), «Nucleic Acids Research» (Oxf., 1974), «Biochimie» (Р., 1914; Amst., 1986), «Trends in Biochemical Sciences» (Elsevier, 1976) и др. В России результаты экспериментальных исследований печатаются в журналах «Биохимия» (М., 1936), «Физиология растений» (М., 1954), «Журнал эволюционной биохимии и физиологии» (СПб., 1965), «Прикладная биохимия и микробиология» (М., 1965), «Биологические мембраны» (М., 1984), «Нейрохимия» (М., 1982) и др., обзорные работы по биохимии - в журналах «Успехи современной биологии» (М., 1932), «Успехи химии» (М., 1932) и др.; ежегодник «Успехи биологической химии» (М., 1950).

Лит.: Джуа М. История химии. М., 1975; Шамин А. М. История химии белка. М., 1977; он же. История биологической химии. М., 1994; Основы биохимии: В 3 т. М., 1981; Страйер Л. Биохимия: В 3 т. М., 1984-1985; Ленинджер А. Основы биохимии: В 3 т. М., 1985; Азимов А. Краткая история биологии. М., 2002; Эллиот В., Эллиот Д. Биохимия и молекулярная биология. М., 2002; Berg J.М., Tymoczko J.L., Stryer L. Biochemistry. 5th ed. N. Y., 2002; Биохимия человека: В 2 т. 2-е изд. М., 2004; Березов Т. Т., Коровкин Б. Ф. Биологическая химия. 3-е изд. М., 2004; Voet D., VoetJ. Biochemistry. 3rd ed. N. Y., 2004; Nelson D. L., Cox М. М. Lehninger principles of biochemistry. 4th ed. N. Y., 2005; Elliott W., Elliott D. Biochemistry and molecular biology. 3rd ed. Oxf., 2005; Garrett R.Н., Grisham С. М. Biochemistry. 3rd ed. Belmont, 2005.

А. Д. Виноградов, А. Е. Медведев.

БИОХИМИЯ
наука, которая описывает на языке химии строение и функции живых организмов. Биохимические концепции находят применение в медицине, пищевой, фармацевтической и микробиологической промышленности, сельском хозяйстве, а также в перерабатывающей промышленности, использующей отходы и побочные продукты сельского хозяйства.
Области исследований. В развитии биохимии можно выделить несколько этапов и направлений.
Типы органических соединений и их структура. Фундаментальное значение имело составление перечня органических соединений, обнаруженных в живых организмах, и установление структуры каждого из них. Этот перечень включает относительно простые соединения - аминокислоты, сахара и жирные кислоты, затем более сложные - пигменты (придающие окраску, например, цветкам), витамины и коферменты (небелковые компоненты ферментов), а заканчивается гигантскими молекулами белков и нуклеиновых кислот.
Метаболические пути. По-видимому, наиболее значительные успехи в биохимии связаны с выяснением путей биосинтеза природных соединений из более простых веществ, т.е. из компонентов пищи у животных и из диоксида углерода и минеральных веществ (в ходе фотосинтеза) у растений. Биохимикам удалось подробно изучить основные метаболические пути, обеспечивающие синтез и расщепление природных соединений у животных, растений и микроорганизмов (в частности, у бактерий).
Структура и функции макромолекул. Третье направление биохимии связано с анализом связи между структурой и функцией биологических макромолекул. Так, биохимики пытаются понять, какие особенности структуры белковых катализаторов лежат в основе их специфичности, т.е. способности ускорять строго определенные реакции; как выполняют свои функции сложные полисахариды, входящие в состав клеточных стенок и мембран; каким образом сложные липиды, присутствующие в нервной ткани, участвуют в функционировании нервных клеток - нейронов.
Функционирование клеток. Еще одна проблема, которой занимаются биохимики, - раскрытие механизмов функционирования специализированных клеток. Исследуются, например, следующие вопросы: как происходит сокращение мышечных клеток, как определенные клетки формируют костную ткань, каким образом эритроциты переносят кислород от легких к тканям и забирают из тканей углекислый газ, каков механизм синтеза пигментов в клетках растений и т.д.
Генетические аспекты. Исследования, начавшиеся в 1940-х годах и проводившиеся на грибах и бактериях, а затем на высших организмах, включая человека, показали, что обычно в результате мутации генов в клетках перестают протекать определенные биохимические реакции. Эти наблюдения привели к созданию концепции гена как информационной единицы, отвечающей за синтез специфического белка. Если белок является ферментом, а кодирующий его ген подвергся мутации (т.е. изменился), то клетка утрачивает способность осуществлять реакцию, которую этот фермент должен был бы катализировать. Ген - это специфический сегмент молекулы дезоксирибонуклеиновой кислоты (ДНК), который способен реплицироваться (воспроизводить себя) и ответствен за синтез определенного белка. Многие биохимические исследования направлены на выяснение деталей репликации нуклеиновых кислот и механизма синтеза белков, а потому тесно связаны с генетикой. Область исследований, лежащую в сфере и биохимии и генетики, обычно называют молекулярной биологией. Проект "Геном человека" - грандиозный международный проект в области молекулярной биологии и генетики, в котором принимают участие коллективы ученых из многих стран. Цель проекта - построить генетические карты 23 хромосом человека с точным указанием положения всех десятков тысяч генов на этих хромосомах и в конечном итоге определить структуру хромосом, т.е. последовательность примерно 3 млрд. пар азотистых оснований, из которых состоит хромосомная ДНК. Эти исследования позволят создать доступную для всех ученых базу данных, представляющих большую ценность для изучения генетики человека, а главное - помогут биохимикам раскрыть механизмы наследственных болезней.
Медицинская биохимия. С каждым годом все большее число болезней удается связать с теми или иными нарушениями метаболизма. Совместные усилия биохимиков и врачей позволили раскрыть природу нарушений, лежащих в основе таких заболеваний, как сахарный диабет и серповидноклеточная анемия. Более чем в 800 случаях установлена корреляция между нарушениями метаболизма и генетическими дефектами, в некоторых случаях найдены способы, которые позволяют смягчить последствия заболевания. Важную роль в устранении патологических состояний играют и негенетические факторы. Например, определение солевого состава и кислотно-щелочного равновесия плазмы крови позволяет избежать шока или обезвоживания при обширных хирургических вмешательствах, успешно бороться с неукротимой рвотой, диареей у грудных детей и другими заболеваниями.
См. также:
БИОФИЗИКА ;
КЛЕТКА ;
ФЕРМЕНТЫ ;
ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ ;
ГЕННАЯ ИНЖЕНЕРИЯ ;
МЕТАБОЛИЗМ ;
НУКЛЕИНОВЫЕ КИСЛОТЫ ;
ФОТОСИНТЕЗ ;
БЕЛКИ .
ЛИТЕРАТУРА
Страйер Л. Биохимия, тт. 1-3. М., 1985 Ленинджер А. Основы биохимии, тт. 1-3. М., 1985 Гудвин Т., Мерсер Э. Введение в биохимию растений, тт. 1-2. М., 1986 Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека, тт. 1-2. М., 1993

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "БИОХИМИЯ" в других словарях:

    Биохимия … Орфографический словарь-справочник

    Современная энциклопедия

    Биохимия - БИОХИМИЯ, наука о химических веществах, входящих в состав организмов, их структуре, распределении, превращениях и функциях, а также о химических процессах, лежащих в основе жизнедеятельности. Первые сведения по биохимии человек получил в процессе … Иллюстрированный энциклопедический словарь

    - (греч.). Учение об обмене материи в живых телах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БИОХИМИЯ учение об обмене материи в живых существах. Полный словарь иностранных слов, вошедших в употребление в… … Словарь иностранных слов русского языка

    Наука, изучающая состав и химические процессы, происходящие в живых организмах. Биохимия играет существенную роль в познании закономерностей потока энергии и круговорота веществ в экосистемах, их биологической продуктивности, биогеохимических… … Экологический словарь

    Изучает входящие в состав организмов химические вещества, их структуру, распределение, превращения и функции. Первые сведения по биохимии связаны с хозяйственной деятельностью человека (обработка растительного и животного сырья, использование… … Большой Энциклопедический словарь

    Биологическая химия, наука о химич. составе живой материи и о химич. процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Б. слагается из статической Б., занимающейся преимущественно анализом химич. состава… … Биологический энциклопедический словарь

    БИОХИМИЯ, наука о химии живых организмов. Использует методы органической и физической химии для исследования процессов жизни. Биохимики изучают как структуру и свойства всех компонентов живой материи (ЖИРЫ, БЕЛКИ, энзимы, ГОРМОНЫ, ВИТАМИНЫ, ДНК,… … Научно-технический энциклопедический словарь

    Сущ., кол во синонимов: 3 биология (73) нейрохимия (1) ферментология (2) … Словарь синонимов

    биохимия - — Тематики биотехнологии EN biochemistry … Справочник технического переводчика

    биохимия - биологическая химия биол., хим … Словарь сокращений и аббревиатур

Книги

  • Биохимия , Л. Страйер , В книге ученого из США на самом современном научном уровне рассмотрены основныепроблемы биохимии и молекулярной биологии. Во втором томе рассматриваются процессы генерирования, превращения и… Категория: Математика и естественные науки Серия: Издатель: ЁЁ Медиа ,

Что такое БиоХимия?

Вопрос решен и закрыт .

    Будущий врач, химик или фармацевт?

    3)ну так белки - они же денатурируют, поэтому и в осадок выпадают! нагреваешь выше 70 градусов и всё. водородные связи распались. белок потерял свою форму в пространстве, т.е. распалась вторичная структура (это когда он закручивался в спираль и занимал определенное пположение в просранстве), только первичная структура не пострадала (аминокислоты, последовательно соединённые пептидными связями "в линию")... * ___это примерно как, если бы песочная фигура вдруг рассыпалась на песчинки и потеряла свою форму в пространстве, хотя молекулы песка сохранились те же___ * ну или кроме нагревания, кислотой и другими химикалиями, органическими растворителями (этанол, например), солями тяжелых металлов можно на белок воздействовать и он в осадок выпадет, ещё УВ излучение, формалин)) ... с третичноу структурой всё сложнее. там еще бывают ионные (соо- и NH3+), гидрофильные, гидрофобные связи...

    2)гидролиз белков пролисходит в кислой среде, при повыш. температуре. (методы см.выше) а ещё биохимический гидролиз делают энзимы:) - протеазы. из протеина образуются пептоны, потом полипептиды, потом альфааминокислоты. во, биохимический метод.

    1)а если у аминокислоты 2 группы СООН, то у этой кислоты будет отрицательный заряд и соответсвенно - кислотные свойста, а если две группы ОН, то отрицательный заряд и щелочные свойтсва. а какие особенности реакции конденсации - я в ступоре, не знаю.

    Из пальца кровь берут для мелких анализов: глюкометр - на сахар, на группу крови могут брать, на проверку уровня гемоглобина. Из вены берут на крупные анализы (гепатит, СПИД и т.д.)

    Кровь из пальца??? Странно... уже давно из пальца кровь не берут... ты с какой деревни?


    Берут ещё как. Везде!

    эта деревня называется россией)))


    В России медицина одна из лучших в мире! Разные клиники есть. И не называй Россию деревней! Москва, Питер, Казань, Челябинск, Уфа, Омск, Новосибирск и многое др. городов все около миллиона или больше населением. И ты там был? Я был! Везде динамика! Народ бегает, торгует, работает... а у нас в Латвии внешне наблюдается латышская тормознутость. Картину везде наблюдал: прямая трасса, машине надо повернуть налево, естественно она немного тормозит, в России же народ за этой машиной не будет ждать, пока она повернёт, они все объедут по обочине и поедут дальше. Потому как там важно успевать и делать!
  • Можно спать спокойно,но периодически раз в полгода повторять.Так врачи рекомендуют.

    В любом случае придется сдавать и практику, и теорию. Лучше всё подучить, позаниматься самостоятельно и с репетитором. Темы:
    1. Кровь;
    2. Клиническая биохимия;
    3. Мышцы;
    4. Отклонения и нормы;
    5. Аминокислоты;
    6. Белки;
    7. Ферменты;
    8. Обмен аминокислот;
    9. Витамины;
    10. Жиры;
    11. Углеводы;
    12. Нарушение обмена аминокислот;
    13. Превращение аминокислот;
    14. Обмен азотистых оснований и нуклеотидов;
    15. Матричные биосинтозы;
    16. Биосинтозы;
    17. Обмен и строение углеводов;
    18. Общие пути катаболизма;
    19. Гормональная сигнализация;
    20. Биохимия азотистых веществ крови;
    21. Обмен гема и гемоглобина;
    22. Кислотно-основное состояние;
    23. Биохимия почек;
    24. Биохимия печени.

Биохимия (от греч. «bios» ‒ «жизнь», биологическая или физиологическая) – это наука, которая изучает химические процессы внутри клетки, влияющие на жизнедеятельность всего организма или его определенных органов. Целью науки биохимии является познание химических элементов, состава и процесса обмена веществ, способов его регуляции в клетке. По другим определениям, биохимией называется наука о химической структуре клеток и организмах живых существ.

Чтобы понять, для чего нужна биохимия, представим науки в виде элементарной таблицы.

Как видно, основой для всех наук есть анатомия, гистология и цитология, которые изучают все живое. На их основе построены биохимия, физиология и патофизиология, где познают функционирование организмов и химические процессы внутри них. Без этих наук не смогут существовать и остальные, что представлены в верхнем секторе.

Есть и другой подход, по которому науки делятся на 3 типа (уровня):

  • Те, что изучают клеточный, молекулярный и тканный уровень жизни (науки анатомия, гистология, биохимия, биофизика);
  • Изучают патологические процессы и заболевания (патофизиология, патологическая анатомия);
  • Диагностируют внешнюю реакцию организма на заболевания (клинические науки, такие как терапия и хирургия).

Вот так мы выяснили, какое место среди наук занимает биохимия, или, как ее еще называют, медицинская биохимия. Ведь любое ненормальное поведение организма, процесс его метаболизма повлияет на химическую структуру клеток и проявит себя во время проведения БАК.

Для чего сдают анализы? Что показывает биохимический анализ крови?

Биохимия крови – это метод диагностирования в лабораторных условиях, что показывает заболевания в различных направлениях медицины (например, терапии, гинекологии, эндокринологии) и помогает определить работу внутренних органов и качество обмена белков, липидов и углеводов, а также достаточность в организме микроэлементов.

БАК, или биохимическое исследование крови, – это анализ, с помощью которого получают самую широкую информацию касательно разнообразных заболеваний. По его результатам можно узнать функциональное состояние организма и каждого органа в отдельном случае, ведь любой недуг, атакующий человека, так или иначе проявится в результатах БАК.

Что входит в состав биохимии?

Не очень удобно, да и не нужно, проводить биохимические исследования абсолютно всех показателей, и кроме того, чем их больше, тем больше нужно крови, а также и дороже они вам обойдутся. Потому различают стандартный и комплексный БАКи. Стандартный назначается в большинстве случаев, а вот расширенный с дополнительными показателями назначает врач, если ему нужно выяснить дополнительные нюансы в зависимости от симптомов недуга и целей анализа.

Базовые показатели.

  1. Общий белок в крови (TP, Total Protein).
  2. Билирубин.
  3. Глюкоза, липаза.
  4. АлАТ (Аланинаминотрансфераза, АЛТ) и АсАТ (Аспартатаминотрансфераза, АСТ).
  5. Креатинин.
  6. Мочевина.
  7. Электролиты (Калий, K/Кальций, Сa/Натрий, Na/ Хлор, Cl/Магний, Mg).
  8. Холестерин общий.

Развернутый профиль включает в себя любые из этих дополнительных показателей (а также другие, очень специфические и узконаправленные, не обозначенные в этом перечне).

Биохимический общетерапевтический стандарт: нормы взрослых

Биохимический анализ крови Нормы
(БАК)
Общий белок от 63 до 85 г/литр
Билирубин (прямой, непрямой, общий) общий до 5-21 мкмоль/литр
прямой – до 7,9 ммоль/литр
непрямой ‒ рассчитывается, как разница между прямым и непрямым показателями
Глюкоза от 3,5 до 5,5 ммоль/литр
Липаза до 490 Ед/литр
АлАТ и АсАТ для мужчин – до 41 Ед/литр
для женщин – до 31 Ед/литр
Креатининфосфокиназа до 180 Ед/литр
ALKP до 260 Ед/литр
Мочевина от 2,1 до 8,3 ммоль/л
Амилаза от 28 до 100 Ед/л
Креатинин для мужчин – от 62 до 144 мкмоль/литр
для женщин – от 44 до 97 мкмоль/литр
Билирубин от 8,48 до 20,58 мкмоль/литр
ЛДГ от 120-240 Ед/литр
Холестерин от 2,97 до 8,79 ммоль/литр
Электролиты К от 3,5 до 5,1 ммоль/литр
Сa от 1,17 до 1,29 ммоль/литр
Na от 139 до 155 ммоль/литр
Cl от 98 до 107 ммоль/литр
Mg от 0,66 до 1,07 ммоль/литр

Расшифровка биохимии

Расшифровка данных, которые были описаны выше, проводится по определенным значениям и нормам.

  1. Общий белок – это количество всего протеина, находящегося в человеческом организме. Превышение нормы указывает на различные воспаления в организме (на проблемы печени, почек, мочеполовой системы, ожогового недуга или на рак), при дегидратации (обезвоживании) во время рвоты, потоотделении в особо больших размерах, кишечной непроходимости или миеломной болезни, недостаток – на дисбаланс в питательном рационе, длительное голодание, болезнь кишечника, печени или при нарушении синтеза в результате наследственных заболеваний.

  2. Альбумин
    ‒ это содержащаяся в крови белковая фракция с высокой концентрацией. Он связывает воду, и его низкое количество приводит к развитию отеков – вода не задерживается в крови и попадает в ткани. Обычно, если снижается белок, то и количество альбумина падает.
  3. Анализ билирубина в плазме общий (прямой и непрямой) – это диагностика пигмента, который образуется после расщепления гемоглобина (для человека он токсический). Гипербилирубинемия (превышение уровня билирубина) называется желтухой, причем выделяют клиническую желтуху надпеченочную (в том числе у новорожденных), печеночно-клеточную и подпеченочную. Она указывает на анемию, обширные кровоизлияния впоследствии гемолитической анемии, гепатит, разрушение печени, онкологию и другие заболевания. Она страшит патологией печени, но может повыситься и у человека, перенесшего удары и травмы.
  4. Глюкоза. Ее уровень определяет углеводный обмен, то есть энергию в организме, и как работает поджелудочная железа. Если глюкозы очень много – это может быть диабет, физические нагрузки или повлиял прием гормональных препаратов, если мало – гиперфункция поджелудочной железы, болезни эндокринной системы.
  5. Липаза – это расщепляющий жиры фермент, который играет важную роль в обмене веществ. Его повышение свидетельствует о болезни поджелудочной.
  6. АЛТ – «печеночный маркер», по нему отслеживают патологические процессы печени. Повышенная норма информирует о проблемах в работе сердца, печении или гепатите (вирусном).
  7. АСТ – «сердечный маркер», по нему видно качество работы сердца. Превышение нормы свидетельствует о нарушении работы сердца и гепатите.
  8. Креатинин – дает информацию о функционировании почек. Повышен, если у человека есть острое или хроническое заболевание почек или наблюдается разрушение ткани мышечной, эндокринных нарушениях. Завышен у людей, которые употребляют много мясных продуктов. И потому креатинин понижен у вегетарианцев, а также у беременных, но очень сильно на диагностику не повлияет.
  9. Анализ мочевины – это исследование продуктов белкового обмена, работы печени и почек. Завышение показателя происходит при нарушении в работе почек, когда они не справляются с выведением жидкости из организма, а снижение характерно для беременных, при диете и нарушениях, связанных с работой печени.
  10. Ггт в биохимическом анализе информирует об обмене аминокислот в организме. Его высокий показатель виден при алкоголизме, а также, если поражается кровь токсинами или предполагается дисфункция печени и желчевыводящих путей. Низкий – если есть хронические заболевания печени.
  11. Лдг в исследовании характеризует протекание энергетических процессов гликолиза и лактата. Высокий показатель указывает на негативное воздействие на печень, легкие, сердце, поджелудочную железу или почки (заболевания пневмония, инфаркт, панкреатит и прочие). Низкий показатель лактатдегидрогеназы, как и низкий креатинин, на диагностику не повлияет. Если ЛДГ повышен, причины у женщин могут быть следующие: повышенные физические нагрузки и беременность. У новорожденных тоже этот показатель слегка завышен.
  12. Электролитный баланс указывает на нормальный процесс обмена веществ в клетку и из клетки назад, в том числе и процесс работы сердца. Алиментарные нарушения зачастую стают главной причиной дисбаланса электролитов, но также это может быть рвота, диарея, гормональный сбой или сбой в работе почек.
  13. Холестерол (холестерин) общий – повышается, если у человека ожирение, атеросклероз, дисфункции печени, щитовидной железы, и снижается, когда человек садится на безжировую диету, при септисе или другой инфекции.
  14. Амилаза – фермент, содержащийся в слюне и поджелудочной. Высокий уровень покажет, если имеются холецистит, признаки сахарного диабета, перитонита, паротита и панкреатита. Также повысится, если употреблять алкогольные напитки или препараты – глюкокортикоиды, также характерно для беременных во время токсикоза.

Показателей биохимии очень много и основных, и дополнительных, также проводится комплексная биохимия, в которую входят как основные, так и дополнительные показатели на усмотрение врача.

Сдать биохимию натощак или нет: как подготовиться к анализу?

Анализ крови на Бх – ответственный процесс, и готовиться к нему нужно заранее и со всей серьезностью.


Эти меры необходимы, чтобы анализ был более точным и никакие дополнительные факторы на него не повлияли. В ином случае ‒ придется пересдавать анализы, так как малейшие изменения условий значительно повлияют на процесс метаболизма.

Откуда берут и как сдавать кровь

Сдача крови на биохимию происходит путем забора шприцом крови из вены на локтевом изгибе, иногда из вены на предплечье или кисти. В среднем достаточно 5-10 мл крови для того, чтобы сделать основные показатели. Если нужен развернутый анализ биохимии – тогда берется и объем крови больше.

Норма показателей биохимии на специализированном оборудовании от разных производителей может несколько отличаться от средних границ. Экспресс-метод подразумевает получение результатов в течение одного дня.

Процедура забора крови почти безболезненна: присаживаетесь, процедурная медсестра готовит шприц, налаживает на руку жгут, обрабатывает место, где будет делаться укол, антисептиком и берет образец крови.

Полученную помещает в пробирку и отдают в лабораторию на диагностику. Врач-лаборант размещает образец плазмы в специальный прибор, который создан для определения с высокой точностью показателей биохимии. Он же проводит обработку и хранение крови, определяет дозирование и порядок проведения биохимии, диагностирует полученные результаты, в зависимости от тех показателей, которые потребовал лечащий врач, и оформляет бланк результатов биохимии и лабораторно-химический анализ.

Лабораторно-химический анализ передают в течение дня лечащему врачу, который ставит диагноз и назначает лечение.

БАК со своим множеством разнообразных показателей дает возможность увидеть обширную клиническую картину конкретного человека и конкретной болезни.

БИОХИМИЯ (биологическая химия) - биологическая наука, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения и связь этих превращений с деятельностью органов и тканей. Совокупность процессов, неразрывно связанных с жизнедеятельностью, принято называть обменом веществ (см. Обмен веществ и энергии).

Изучение состава живых организмов издавна привлекало внимание ученых, поскольку к числу веществ, входящих в состав живых организмов, помимо воды, минеральных элементов, липидов, углеводов и т. д., относится ряд наиболее сложных органических соединений: белки и их комплексы с рядом других биополимеров, в первую очередь с нуклеиновыми кислотами.

Установлена возможность спонтанного объединения (при определенных условиях) большого числа белковых молекул с образованием сложных надмолекулярных структур, напр, белкового чехла хвоста фага, некоторых клеточных органоидов и т. д. Это позволило ввести понятие о самособирающихся системах. Такого рода исследования создают предпосылки для решения проблемы образования сложнейших надмолекулярных структур, обладающих признаками и свойствами живой материи, из высокомолекулярных органических соединений, возникших некогда в природе абиогенным путем.

Современная Б. как самостоятельная наука сложилась на рубеже 19 и 20 вв. До этого времени вопросы, рассматриваемые ныне Б., изучались с разных сторон органической химией и физиологией. Органическая химия (см.), изучающая углеродистые соединения вообще, занимается, в частности, анализом п синтезом тех хим. соединений, которые входят в состав живой ткани. Физиология (см.) же наряду с изучением жизненных функций изучает и хим. процессы, лежащие в основе жизнедеятельности. Т. о., биохимия является продуктом развития этих двух наук и ее можно подразделить на две части: статическую (или структурную) и динамическую. Статическая Б. занимается изучением природных органических веществ, их анализом и синтезом, тогда как динамическая Б. изучает всю совокупность химических превращений тех или иных органических соединений в процессе жизнедеятельности. Динамическая Б., т. о., стоит ближе к физиологии и медицине, чем к органической химии. Этим и объясняется то, что вначале Б. называлась физиологической (или медицинской) химией.

Как всякая быстро развивающаяся наука, Б. вскоре после своего возникновения начала делиться на ряд обособленных дисциплин: биохимия человека и животных, биохимия растений, биохимия микробов (микроорганизмов) и ряд других, поскольку, несмотря на биохимическое единство всего живого, в животных и растительных организмах существуют и коренные различия в характере обмена веществ. В первую очередь это касается процессов ассимиляции. Растения, в отличие от животных организмов, обладают способностью использовать для построения своего тела такие простые химические вещества, как углекислый газ, вода, соли азотной и азотистой кислот, аммиак и др. При этом процесс построения клеток растений требует для своего осуществления притока энергии извне в форме солнечного света. Использование этой энергии первично осуществляют зеленые аутотрофные организмы (растения, простейшие - Euglena, ряд бактерий), которые в свою очередь сами служат пищей для всех остальных, так наз. гетеротрофных организмов (в т. ч. и человека), населяющих биосферу (см.). Т. о., выделение биохимии растений в особую дисциплину является обоснованным как с теоретической, так и практической сторон.

Развитие ряда отраслей промышленности и сельского хозяйства (переработка сырья растительного и животного происхождения, приготовление пищевых продуктов, изготовление витаминных и гормональных препаратов, антибиотиков и т. д.) привело к выделению в особый раздел технической Б.

При изучении химизма различных микроорганизмов исследователи столкнулись с целым рядом специфических веществ и процессов, представляющих большой научно-практический интерес (антибиотики микробного и грибкового происхождения, различные виды брожений, имеющие промышленное значение, образование белковых веществ из углеводов и простейших азотистых соединений и т. д.). Все эти вопросы рассматривают в биохимии микроорганизмов.

В 20 в. возникла как особая дисциплина биохимия вирусов (см. Вирусы).

Потребностями клинической медицины было вызвано возникновение клинической биохимии (см.).

Из других разделов Б., которые обычно рассматриваются как достаточно обособленные дисциплины, имеющие свои задачи и специфические методы исследования, следует назвать: эволюционную и сравнительную Б. (биохимические процессы и хим. состав организмов на различных стадиях их эволюционного развития), энзимологию (структура и функция ферментов, кинетика ферментативных реакций), Б. витаминов, гормонов, радиационную биохимию, квантовую биохимию - сопоставление свойств, функций и путей превращения биологически важных соединений с их электронными характеристиками, полученными с помощью квантовохимических расчетов (см. Квантовая биохимия).

Особенно перспективным оказалось изучение структуры и функции белков и нуклеиновых кислот на молекулярном уровне. Этот круг вопросов изучается науками, возникшими на стыках Б. с биологией и генетикой,- молекулярной биологией (см.) и биохимической генетикой (см.).

Исторический очерк развития исследований по химии живой материи. Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным органическим соединениям. В 16 - 17 вв. воззрения алхимиков получили развитие в трудах ятрохимиков (см. Ятрохимия), считавших, что жизнедеятельность организма человека можно правильно понять лишь с позиций химии. Так, один из виднейших представителей ятрохимии - немецкий врач и естествоиспытатель Ф. Парацельс выдвинул прогрессивное положение о необходимости тесной связи химии с медициной, подчеркивая при этом, что задача алхимии не в изготовлении золота и серебра, а в создании того, что является силой и добродетелью медицины. Ятрохимики ввели в мед. практику препараты ртути, сурьмы, железа и других элементов. Позже И. Ван-Гельмонт высказал предположение о наличии в «соках» живого тела особых начал - так наз. «ферментов», участвующих в разнообразных хим. превращениях.

В 17 -18 вв. широкое распространение получила теория флогистона (см. Химия). Опровержение этой, ошибочной в своей основе, теории связано с работами М. В. Ломоносова и А. Лавуазье, открывших и утвердивших в науке закон сохранения материи (массы). Лавуазье внес важнейший вклад в развитие не только химии, но и в изучение биол, процессов. Развивая более ранние наблюдения Майова (J. Mayow, 1643-1679), он показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ. Одновременно им же, вместе с Лапласом, было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 в. было определено количество тепла, выделяемого при сгорании углеводов, жиров и белков.

Крупными событиями второй половины 18 в. стали исследования Реомюра (R. Reaumur) и Спалланцани (L. Spallanzani) по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных и птиц на различные виды пищи (гл. обр. мясо) и положили начало изучению ферментов пищеварительных соков. Возникновение энзимологии (учения о ферментах), однако, обычно связывают с именами К. С. Кирхгофа (1814), а также Пейена и Персо (A. Payen, J. Persoz, 1833), впервые изучивших действие на крахмал фермента амилазы in vitro.

Важную роль сыграли работы Пристли (J. Priestley) и особенно Ингенхауса (J. Ingenhouse), открывших явление фотосинтеза (конец 18 в.).

На рубеже 18 и 19 вв. были проведены и другие фундаментальные исследования в области сравнительной биохимии; тогда же было установлено существование круговорота веществ в природе.

Успехи статической Б. с самого начала были неразрывно связаны с развитием органической химии.

Толчком к развитию химии природных соединений явились исследования шведского химика К. Шееле (1742 - 1786). Он выделил и описал свойства целого ряда природных соединений - молочную, винную, лимонную, щавелевую, яблочную кислоты, глицерин и амиловый спирт и др. Большое значение имели исследования И. Берцелиуса и 10. Либиха, закончившиеся разработкой в начале 19 в. методов количественного элементарного анализа органических соединений. Вслед за этим начались попытки синтезировать природные органические вещества. Достигнутые успехи - синтез в 1828 г. мочевины Ф. Веллером, уксусной к-ты А. Кольбе (1844), жиров П. Бертло (1850), углеводов А. М. Бутлеровым (1861) - имели особенно большое значение, т. к. показали возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена. Тем самым была установлена полная несостоятельность широко распространенных в 18-19 вв. виталистических представлений (см. Витализм). Во второй половине 18 - начале 19 в. были проведены и многие другие важные исследования: из мочевых камней была выделена мочевая к-та (Бергман и Шееле), из желчи - холестерин [Конради (J. Conradi)], из меда - глюкоза и фруктоза (Т. Ловиц), из листьев зеленых растений - пигмент хлорофилл [Пеллетье и Кавенту (J. Pelletier, J. Caventou)], в составе мышц был открыт креатин [ Шев-рель (М. E. Chevreul)]. Было показано существование особой группы органических соединений - растительных алкалоидов (Сертюрнер, Мейстер и др.), нашедших позднее применение в мед. практике. Из желатины и бычьего мяса путем их гидролиза были получены первые аминокислоты - глицин и лейцин [Пруст (J. Proust), 1819; Браконно (H. Braconnot), 1820].

Во Франции в лаборатории К. Бернара в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление. В Германии в лабораториях Э. Фишера, Э. Ф. Гоппе-Зейлера, А. Косселя, Э. Абдергальдена и других были изучены структура и свойства белков, а также продуктов их гидролиза, в т. ч. и ферментативного.

В связи с описанием дрожжевых клеток (К. Коньяр-Латур во Франции и Т. Шванн в Германии, 1836 -1838 гг.) начали активно изучать процесс брожения (Либих, Пастер и др.). Вопреки мнению Либиха, рассматривавшего процесс брожения как чисто химический процесс, протекающий с обязательным участием кислорода, Л. Пастер установил возможность существования анаэробиоза т. е. жизни в отсутствие воздуха, за счет энергии брожения (процесса, неразрывно связанного, по его мнению, с жизнедеятельностью клеток, напр, клеток дрожжей). Ясность в этот вопрос была внесена опытами М. М. Манассеиной (1871), показавшей возможность сбраживания сахара разрушенными (растиранием с песком) дрожжевыми клетками, и особенно работами Бухнера (1897) по природе брожения. Бухнеру удалось получить из дрожжевых клеток бесклеточный сок, способный, подобно живым дрожжам, сбраживать сахар с образованием спирта и углекислоты.

Возникновение и развитие биологической (физиологической) химии

Накопление большого количества сведений относительно химического состава растительных и животных организмов и химических процессов, протекающих в них, привело к необходимости систематизации и обобщений в области Б. Первой работой в этом плане был учебник Зимона (J. E. Simon) «Handbuch der angewandten medizinischen Chemie» (1842). Очевидно, именно с этого времени термин «биологическая (физиологическая) химия» утвердился в науке.

Несколько позднее (1846) вышла в свет монография Либиха «Die Tierchemie oder die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie». В России первый учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 г. Периодическая литература по биологической (физиологической) химии регулярно начала выходить с 1873 г. в Германии. В этом году Мали (L. R. Maly) опубликовал «Jahres-Bericht uber die Fortschritte der Tierchemie». B 1877 г. Э. Ф. Гоппе-Зейлером был основан научный журнал «Zeitschr. fur physiologische Chemie», переименованный впоследствии в «Hoppe-Seyler’s Zeitschr. fur physiologische Chemie». Позднее биохимические журналы начали издаваться во многих странах мира на английском, французском, русском и других языках.

Во второй половине 19 в. на медицинских факультетах многих русских и зарубежных университетов были учреждены специальные кафедры медицинской, или физиологической, химии. В России первая кафедра медицинской химии была организована А. Я. Данилевским в 1863 г. в Казанском ун-те. В 1864 г. А. Д. Булыгинский основал кафедру медицинской химии на медицинском ф-те Московского ун-та. Вскоре кафедры медицинской химии, позднее переименованные в кафедры физиологической химии, возникают на медицинских факультетах других университетов. В 1892 г. начинает функционировать организованная А. Я. Данилевским кафедра физиологической химии в Военно-медицинской (медико-хирургической) академии в Петербурге. Однако чтение отдельных разделов курса физиологической химии проводилось там значительно раньше (1862- 1874) на кафедре химии (А. П. Бородин).

Подлинный расцвет Б. наступил в 20 в. В самом начале ого была сформулирована и экспериментально обоснована полипептидная теория строения белков (Э. Фишер, 1901 - 1902, и др.). Позднее был разработан ряд аналитических методов, в т. ч. микрометодов, позволяющих изучать аминокислотный состав минимальных количеств белка (несколько миллиграммов); широкое распространение получил метод хроматографии (см.), впервые разработанный русским ученым М. С. Цветом (1901 - 1910), методы рентгеноструктурного анализа (см.), «меченых атомов» (изотопной индикации), цитоспектрофотометрии, электронной микроскопии (см.). Крупных успехов добивается препаративная белковая химия, разрабатываются эффективные методы выделения и фракционирования белков и ферментов и определения их молекулярного веса [Коэн (S. Cohen), Тизелиус (A. Tiselius), Сведберг (Т. Swedberg)].

Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков (в т. ч. и ферментов) и полипептидов. Синтезируется ряд важных, обладающих биологической активностью белковых веществ.

Крупнейшие заслуги в развитии этого направления связаны с именами Л. Полинга и Кори (R. Corey) - структура полипептидных цепей белка (1951); В. Виньо - структура и синтез окситоцина и вазопрессин (1953); Сэнгера (F. Sanger) - структура инсулина (1953); Стайна (W. Stein) и С. Мура - расшифровка формулы рибонуклеазы, создание автомата для определения аминокислотного состава белковых гидролизатов; Перутца (М. F. Perutz), Кендрю (J. Kendrew) и Филлипса (D. Phillips) - расшифровка с помощью методов рентгеноструктурного анализа структуры и создание трехмерных моделей молекул миоглобина, гемоглобина, лизоцима и ряда других белков (1960 и последующие годы).

Выдающееся значение имели работы Самнера (J. Sumner), впервые доказавшего (1926) белковую природу фермента уреазы; исследования Нортропа (J. Northrop) и Кунитца (М. Kunitz) по очистке и получению кристаллических препаратов ферментов - пепсина и других (1930); В. А. Энгельгардта о наличии АТФ-азной активности у контрактильного белка мышц миозина (1939 - 1942) и т. д. Большое число работ посвящается изучению механизма ферментативного катализа [Михаэлис и Ментен (L. Michaelis, М. L. Menten), 1913; Р. Вильштеттер, Теорелль, Кошленд (Н. Theorell, D. E. Koshland), A. E. Браунштейн и М. М. Шемякин, 1963; Штрауб (F. В. Straub) и др.], сложных мультиферментных комплексов (С. Е. Северин, Ф. Линен и др.), роли структуры клеток в осуществлении ферментативных реакций, природы активных и аллостерических центров в молекулах ферментов (см. Ферменты), первичной структуры ферментов [В. Шорм, Анфинсен (С. В. Anfinsen), В. Н. Орехович и др.], регуляции активности ряда ферментов гормонами (В. С. Ильин и др.). Изучаются свойства «семейств ферментов» - изоферментов [Маркерт, Каплан, Вроблевский (С. Markert, N. Kaplan, F. Wroblewski), 1960-1961].

Важным этапом в развитии Б. явилась расшифровка механизма биосинтеза белка при участии рибосом, информационной и транспортной форм рибонуклеиновых кислот [Ж. Браше, Ф. Жакоб, Моно (J. Monod), 1953-1961; А. Н. Белозерский (1959); А. С. Спирин, А. А. Баев (1957 и последующие годы)].

Блестящие работы Чаргаффа (E. Chargaff), Ж. Дейвидсона, особенно Дж. Уотсона, Ф. Крика и Уилкинса (М. Wilkins), завершаются выяснением структуры дезоксирибонуклеиновой кислоты (см.). Устанавливается двухспиральная структура ДНК и роль ее в передаче наследственной информации. Осуществляется синтез нуклеиновых кислот (ДНК и РНК) А. Корнбергом (1960 - 1968), Вейссом (S. Weiss), С. Очоа. Решается (1962 и последующие годы) одна из центральных проблем современной Б. - расшифровывается РНК-аминокислотный код [Крик, М. Ниренберг, Маттеи (F. Crick, J. H. Matthaei), и др.].

Впервые синтезируется один из генов и фаг фх174. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки (см. Молекулярная генетика). Разрабатывается теория регуляции работы цистронов (см.), ответственных за синтез различных белков и ферментов (Жакоб, Моно), продолжается изучение механизма белкового (азотистого) обмена.

Ранее классическими исследованиями И. П. Павлова и его школы раскрываются основные физиологические и биохимические механизмы работы пищеварительных желез. Особенно плодотворным было содружество лабораторий А. Я. Данилевского и М. В. Ненцкого с лабораторией И. П. Павлова, к-рое привело к выяснению места образования мочевины (в печени). Ф. Гопкинс и его сотр. (Англия) установили значение ранее неизвестных компонентов пищи, развив на этой основе новую концепцию заболеваний, вызываемых пищевой недостаточностью. Устанавливается существование заменимых и незаменимых аминокислот, разрабатываются нормы белка в питании. Расшифровывается промежуточный обмен аминокислот - дезаминирование, переаминирование (А. Е. Браунштейн и М. Г. Крицман), декарбоксилирование, их взаимные превращения и особенности обмена (С. Р. Мардашев и др.). Выясняются механизмы биосинтеза мочевины (Г. Кребс), креатина и креатинина, открывается и подвергается детальному изучению группа экстрактивных азотистых веществ мышц - дипептиды карнозин, карнитин, ансерин [В. С. Гулевич, Аккерманн (D. Ackermann),

С. Е. Северин и др.]. Детальному изучению подвергаются особенности процесса азотистого обмена у растений (Д. Н. Прянишников, В. Л. Кретович и др.). Особое место заняло изучение нарушений азотистого обмена у животных и человека при белковой недостаточности (С. Я. Капланский, Ю. М. Гефтер и др.). Осуществляется синтез пуриновых и пиримидиновых оснований, выясняются механизмы образования мочевой к-ты, детально исследуются продукты распада гемоглобина (пигменты желчи, кала и мочи), расшифровываются пути образования гема и механизм возникновения острых и врожденных форм порфирий и порфиринурий.

Выдающиеся успехи достигнуты в расшифровке структуры важнейших углеводов [А. А. Колли, Толленс, Киллиани, Хауорт (B.C.Tollens, H. Killiani, W. Haworth) и др.] и механизмов углеводного обмена. Подробно выяснено превращение углеводов в пищеварительном тракте под влиянием пищеварительных ферментов и кишечных микроорганизмов (в частности, у травоядных животных); уточняются и расширяются работы, посвященные роли печени в углеводном обмене и поддержании концентрации сахара в крови на определенном уровне, начатые в середине прошлого века К. Бернаром и Э. Пфлюгером, расшифровываются механизмы синтеза гликогена (при участии УДФ-глюкозы) и его распада [К. Кори, Лелуар (L. F. Leloir) и др.]; создаются схемы промежуточного обмена углеводов (гликолитический, пентозный цикл, цикл Трикарбоновых кислот); выясняется характер отдельных промежуточных продуктов обмена [Я. О. Парнас, Эмбден (G. Embden), О. Мейергоф, Л. А. Иванов, С. П. Костычев, Гарден (A. Harden), Кребс, Ф. Липманн, Коэн (S. Cohen), В. А. Энгельгардт и др.]. Выясняются биохимические механизмы нарушения углеводного обмена (диабет, галактоземия, гликогенозы и др.), связанные с наследственными дефектами соответствующих ферментных систем.

Выдающиеся успехи достигнуты в расшифровке структуры липидов: фосфолипидов, цереброзидов, ганглиозидов, стеринов и стеридов [Тирфельдер, А. Виндаус, А. Бутенандт, Ружичка, Рейхштейн (H. Thierfelder, A. Ruzicka, Т. Reichstein) и др.].

Трудами М. В. Ненцкого, Ф. Кноопа (1904) и Дакина (H. Dakin) создается теория β-окисления жирных кислот. Разработка современных представлений о путях окисления (при участии коэнзима А) и синтеза (при участии малонил-КоА) жирных кислот и сложных липидов связана с именами Лелуара, Линена, Липманна, Грина (D. Е. Green), Кеннеди (Е. Kennedy) и др.

Значительный прогресс достигнут при изучении механизма биологического окисления. Одна из первых теорий биологического окисления (так наз. перекисная теория) была предложена А. Н. Бахом (см. Окисление биологическое). Позднее появилась теория, согласно к-рой различные субстраты клеточного дыхания подвергаются окислению и углерод их в конечном счете превращается в CO2 за счет кислорода не поглощаемого воздуха, а кислорода воды (В. И. Палладии, 1908). В дальнейшем в разработку современной теории тканевого дыхания крупный вклад был внесен работами Г. Виланда, Тунберга (Т. Tunberg), Л. С. Штерн, О. Варбурга, Эйлера, Д. Кейлина (Н. Euler) и др. Варбургу принадлежит заслуга открытия одного из коферментов дегидрогеназ - никотинамидадениндинуклеотид фосфата (НАДФ), флавинового фермента и его простетической группы, дыхательного железосодержащего фермента, получившего впоследствии название цитохромоксидазы. Им же был предложен спектрофотометрический метод определения концентрации НАД и НАДФ (тест Варбурга), который затем лег в основу количественных методов определения целого ряда биохимических компонентов крови и тканей. Кейлин установил роль в цепи дыхательных катализаторов железосодержащих пигментов (цитохромов).

Крупное значение имело открытие Липманном коэнзима А., позволившее разработать универсальный цикл аэробного окисления активной формы ацетата - ацетил-КоА (лимоннокислый цикл Кребса).

В. А. Энгельгардтом, а также Липманном было введено понятие о «богатых энергией» фосфорных соединениях, в частности АТФ (см. Аденозинфосфорные кислоты), в макроэргических связях которых аккумулируется значительная часть энергии, освобождающейся при тканевом дыхании (см. Окисление биологическое).

Возможность сопряженного с дыханием фосфорилирования (см.) в цепи дыхательных катализаторов, вмонтированных в мембраны митохондрий, была показана В. А. Белицером и Калькаром (H. Kalckar). Большое число работ посвящено изучению механизма окислительного фосфорилирования [Чейне (В. Chance), Митчелл (P. Mitchell), В. П. Скулачев и др.].

20 в. ознаменовался расшифровкой химического строения всех известных в наст, время витаминов (см.), вводятся международные единицы витаминов, устанавливаются потребности в витаминах человека и животных, создается витаминная промышленность.

Не менее значительные успехи достигнуты в области химии и биохимии гормонов (см.); изучена структура и синтезированы стероидные гормоны коры надпочечников (Виндаус, Рейхштейн, Бутенандт, Ружичка); установлено строение гормонов щитовидной железы - тироксина, дийодтиронина [Э. Кендалл (Е. С. Kendall), 1919; Харингтон (С. Harington), 1926]; мозгового слоя надпочечников - адреналина, норадреналина [Такамине (J. Takamine), 1907]. Осуществлен синтез инсулина, установлено строение соматотропной), адренокортикотропного, меланоцитостимулирующего гормонов; выделены и изучены другие гормоны белковой природы; разработаны схемы взаимопревращения и обмена стероидных гормонов (Н. А. Юдаев и др.). Получены первые данные о механизме действия гормонов (АКТГ, вазопрессина и др.) на обмен веществ. Расшифрован механизм регуляции функций эндокринных желез по принципу обратной связи.

Существенные данные получены при изучении химического состава и обмена веществ ряда важнейших органов и тканей (функциональная биохимия). Установлены особенности в химическом составе нервной ткани. Возникает новое направление в Б.- нейрохимия. Выделен ряд сложных липидов, составляющих основную массу тканей мозга, - фосфатиды, сфингомиелины, плазмалогены, цереброзиды, холестериды, ганглиозиды [Тудихум,Уэлш (J. Thudichum, H. Waelsh), A. B. Палладии, E. М. K репс и др.]. Выясняются основные закономерности обмена нервных клеток, расшифровывается роль биологически активных аминов - адреналина, норадреналина, гистамина, серотонина, γ-амино-масляной к-ты и др. Вводятся в медицинскую практику различные психофармакологические вещества, открывающие новые возможности в лечении различных нервных заболеваний. Подробно изучаются химические передатчики нервного возбуждения (медиаторы), широко используются, особенно в сельском хозяйстве, различные ингибиторы холинэстеразы для борьбы с насекомыми-вредителями и т. д.

Значительные успехи достигнуты при изучении мышечной деятельности. Подробно исследуются сократительные белки мышц (см. Мышечная ткань). Установлена важнейшая роль АТФ в сокращении мышц [В. А. Энгельгардт и М. Н. Любимова, Сент-Дъёрдьи, Штрауб (A. Szent-Gyorgyi, F. В. Straub)], в движении клеточных органелл, проникновении в бактерии фагов [Вебер, Гоффманн-Берлинг (Н. Weber, H. Hoffmann-Berling), И. И. Иванов, В. Я. Александров, Н. И. Арронет, Б. Ф. Поглазов и др.]; подробно исследуется механизм мышечного сокращения на молекулярном уровне [Хаксли, Хансон (H. Huxley, J. Hanson), Г. М. Франк, Тономура (J. Tonomura) и др.], изучается роль в мышечном сокращении имидазола и его производных (G. Е. Северин); разрабатываются теории двухфазной мышечной деятельности [Хассельбах (W. Hasselbach)] и т. д.

Важные результаты получены при изучении состава и свойств крови: изучена дыхательная функция крови в норме и при ряде патологических состояний; выяснен механизм переноса кислорода от легких к тканям и углекислоты от тканей к легким [И. М. Сеченов, Дж.Холдейн, Ван-Слайк (D.van Slyke), Дж. Баркрофт, Гендерсон (L. Henderson), С. Е. Северин, Г. Е. Владимиров, Е.М. Крепе, Г. В. Дервиз]; уточнены и расширены представления о механизме свертывания крови; установлено наличие в плазме крови целого ряда новых факторов, при врожденном отсутствии которых в крови наблюдаются различные формы гемофилии. Изучен фракционный состав белков плазмы крови (альбумин, альфа-, бета- и гамма-глобулины, липопротеиды и др.). Открыт ряд новых плазменных белков (пропердин, C-реактивпый белок, гаптоглобин, криоглобулин, трансферрин, церулоплазмин, интерферон и др.). Открыта система кининов - биологически активных полипептидов плазмы крови (брадикинин, каллидин), играющих важную роль в регуляции местного и общего кровотока и принимающих участие в механизме развития воспалительных процессов, шока и других патологических процессов и состояний.

В развитии современной Б. важную роль сыграла разработка ряда специальных методов исследования: изотопной индикации, дифференциального центрифугирования (разделение субклеточных органоидов), спектрофотометрии (см.), масс-спектрометрии (см.), электронного парамагнитного резонанса (см.) и др.

Некоторые перспективы развития биохимии

Успехи Б. в значительной мере определяют не только современный уровень медицины, но и ее возможный дальнейший прогресс. Одной из основных проблем Б. и молекулярной биологии (см.) становится исправление дефектов генетического аппарата (см. Генотерапия). Радикальная терапия наследственных болезней, связанных с мутационными изменениями тех или иных генов (т. е. участков ДНК), ответственных за синтез определенных белков и ферментов, в принципе возможна лишь путем трансплантации синтезированных in vitro или выделенных из клеток (напр., бактерий) аналогичных «здоровых» генов. Весьма заманчивой задачей является также овладение механизмом регуляции считки генетической информации, закодированной в ДНК, и расшифровки на молекулярном уровне механизма клеточной дифференцировки в онтогенезе. Проблема терапии ряда вирусных заболеваний, особенно лейкозов, вероятно, не будет решена до тех пор, пока не станет полностью ясен механизм взаимодействия вирусов (в частности, онкогенных) с инфицируемой клеткой. В этом направлении интенсивно ведутся работы во многих лабораториях мира. Выяснение картины жизни на молекулярном уровне позволит не только полностью понять происходящие в организме процессы (биокатализ, механизм использования энергии АТФ и ГТФ при выполнении механических функций, передача нервного возбуждения, активный транспорт веществ через мембраны, явление иммунитета и т. д.), но и откроет новые возможности в создании эффективных лекарственных средств, в борьбе с преждевременным старением, развитием сердечно-сосудистых заболеваний (атеросклероз), продлении жизни.

Биохимические центры в СССР. В системе АН СССР функционируют Институт биохимии им. А. Н. Баха, Институт молекулярной биологии, Институт химии природных соединений, Институт эволюционной физиологии и биохимии им. И. М. Сеченова, Институт белка, Институт физиологии и биохимии растений, Институт биохимии и физиологии микроорганизмов, филиал Института биохимии УССР, Институт биохимии Арм. ССР и др. В системе АМН СССР имеются Институт биологической и медицинской химии, Институт экспериментальной эндокринологии и химии гормонов, Институт питания, Отдел биохимии Института экспериментальной медицины. Существует также ряд биохимических лабораторий в других институтах и научных учреждениях АН СССР, АМН СССР, академиях союзных республик, в вузах (кафедры биохимии Московского, Ленинградского и других университетов, ряда медицинских институтов, Военно-медицинской академии и т. д.), ветеринарных, сельскохозяйственных и других научных учреждениях. В СССР насчитывается около 8 тыс. членов Всесоюзного биохимического общества (ВБО), к-рое входит в Европейскую федерацию биохимиков (FEBS) и в Международный биохимический союз (IUB).

Радиационная биохимия

Радиационная Б. изучает изменения обмена веществ, возникающие в организме при действии на него ионизирующей радиации. Облучение вызывает ионизацию и возбуждение молекул клетки, реакции их с возникающими в водной среде свободными радикалами (см.) и перекисями, что приводит к нарушению структур биосубстратов клеточных органелл, равновесия и взаимных связей внутриклеточных биохимических процессов. В частности, эти сдвиги в сочетании с пострадиационными воздействиями со стороны поврежденной ц. н. с. и гуморальных факторов дают начало вторичным нарушениям обмена веществ, обусловливающим течение лучевого заболевания. Важную роль в развитии лучевой болезни играет ускорение распада нуклеопротеидов, ДНК и простых белков, торможение их биосинтеза, нарушения скоординированного действия ферментов, а также окислительного фосфорилирования (см.) в митохондриях, уменьшение количества АТФ в тканях и усиленная окисляемость липидов с образованием перекисей (см. Лучевая болезнь , Радиобиология , Радиология медицинская).

Библиография: Афонский С. И. Биохимия животных, М., 1970; Биохимия, под ред. H. Н. Яковлева, М., 1969; ЗбарекиЙ Б. И., Иванов И. И. и М а р-д а ш e в С. Р. Биологическая химия, JI., 1972; Кретович В. JI. Основы биохимии растений, М., 1971; JI e н и н д-ж e р А. Биохимия, пер. с англ., М., 1974; Макеев И. А., Гулевич В. С. иБроуде JI. М. Курс биологической химии, JI., 1947; Малер Г. Р. и КордесЮ. Г. Оснопы биологической химии, пер. с англ., М., 1970; Фердман Д. JI. Биохимия, М., 1966; Филиппович Ю. Б. Основы биохимии, М., 1969; III т р а у б Ф. Б. Биохимия, пер. с венгер., Будапешт, 1965; R а р о р о г t S. М. Medizinische Bioc-hemie, B., 1962.

Периодические издания - Биохимия, М., с 1936; Вопросы медицинской химии, М., с 1955; Журнал эволюционной биохимии и физиологии, М., с 1965; Известия АН СССР, Серия биологические науки, М., с 1958; Молекулярная биология, М., с 1967; Украшський бюхем1чний журнал, Кшв, с 1946 (1926-1937 - Науков1 записки Украшського бюхемичного шети-туту, 1938-1941 - Бюхем1чний журнал); Успехи биологической химии, JI., с 1924; Успехи современной биологии, М., с 1932; Annual Review of Biochemistry, Stanford, с 1932; Archives of Biochemistry and Biophysics, N. Y., с 1951 (1942-1950 - Archives of Biochemistry); Biochemical Journal, L., с 1906; Biochemische Zeitsch-rift, В., с 1906; Biochemistry, Washington, с 1964; Biochimica et biophysica acta, N. Y.- Amsterdam, с 1947; Bulletin de la Soci6t<5 de chimie biologique, P., с 1914; Comparative Biochemistry and Physiology, L., с 1960; Hoppe-Seyler’s Zeitschrift fiir physiologische Chemie, В., с 1877; Journal of Biochemistry, Tokyo, с 1922; Journal of Biological Chemistry, Baltimore, с 1905; Journal of Molecular Biology, L.-N.Y., с 1960; Journal of Neurochemistry, L., с 1956; Proceedings of the Society for Experimental Biology and Medicine, N. Y., с 1903; См. также в ст. Клиническая биохимия, Физиология, Химия.

Б. радиационная - Кузин А. М. Радиационная биохимия, М., 1962; P о -манцев Е. Ф. и д р. Ранние радиационно-биохимические реакции, М., 1966; Федорова Т. А., Терещенко О. Я. и М а з у р и к В. К. Нуклеиновые кислоты и белки в организме при лучевом поражении, М., 1972; Черкасова Л. С. и д р. Ионизирующее излучение и обмен веществ, Минск, 1962, библиогр.; Altman К. I., Gerber G. В. а. О k a d a S. Radiation biochemistry, v. 1-2, N. Y.- L., 1970.

И. И. Иванов; Т. А. Федорова (рад.).

Похожие статьи