Основы электрокардиографии. Вектор сердца и его отражение на электрокардиограмме Источником электродвижущей силы является сердце

Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС - это источник, характеризующийся электродвижущей силой и внутренним сопротивлением.Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю. Обозначается буквои Е

Обозначается такой хитренькой Е - закругленной, как бы заглавной прописной. Эта хитренькая Е так и читается ЭДС.ну а ЭДС расшифровывается как электродвижущая сила

Обозначаетсябуквой Е. Читается Электро Движущая Сила

Что такое электродвижущая сила ЭДС

Электродвижущая сила (ЭДС) - в устройстве, осуществляющем принудительное разделение положительных и отрицательных зарядов (генераторе), величина, численно равная разности потенциалов между зажимами генератора при отсутствии тока в его цепи, измеряется в Вольтах.

Источники электромагнитной энергии (генераторы) - устройства, преобразующие энергию любого неэлектрического вида в электрическую. Такими источниками, например, являю тся:

генераторы на электростанциях (тепловых, ветровых, атомных, гидростанциях), преобразующие механическую энергию в электрическую;

гальванические элементы (батареи) и аккумуляторы всех типов, преобразующие химическую энергию в электрическую и т. п.

ЭДС численно равна работе, которую совершают сторонние силы при перемещении единичного положительного заряда внутри источника или сам источник, проводя единичный положительный заряд по замкнутой цепи.

Электродвижущая сила ЭДС Е - скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток. ЭДС Е численно равна работе (энергии) W в джоулях (Дж), затрачиваемой этим полем на перемещение единицы заряда (1 Кл) из одной точки поля в другую.

Единицей измерения ЭДС является вольт (В). Таким образом, ЭДС равна 1 В, если при перемещении заряда в 1 Кл по замкнутой цепи совершается работа в 1 Дж: [Е] = I Дж/1 Кл = 1 В.

Перемещение зарядов по участку электрической цепи сопровождается затратой энергии.

Величину, численно равную работе, которую совершает источник, проводя единичный положительный заряд по данному участку цепи, называют напряжением U. Так как цепь состоит из внешнего и внутреннего участков, разграничивают понятия напряжений на внешнем Uвш и внутреннем Uвт участках.

Из сказанного очевидно, что ЭДС источника равна сумме напряжений на внешнем U и внутреннем U участках цепи:

Эта формула выражает закон сохранения энергии для электрической цепи.

Измерить напряжения на различных участках цепи можно только при замкнутой цепи. ЭДС измеряют между зажимами источника при разомкнутой цепи.

Напряжение, ЭДС и падение напряжения для активного двухполюсника

Направление ЭДС - это направление принудительного движения положительных зарядов внутри генератора от минуса к плюсу под действием иной, чем электрическая, природы.

Внутреннее сопротивление генератора это сопротивление конструктивных элементов внутри него.

Идеальный источник ЭДС - генератор, внутреннее сопротивление которого равно нулю, а напряжение на его зажимах не зависит от нагрузки. Мощность идеального источника ЭДС бесконечна.

Условное изображение (электрическая схема) идеального генератора ЭДС величиной Е показано на рис. 1, а.

Реальный источник ЭДС, в отличие от идеального, содержит внутреннее сопротивление Ri и его напряжение зависит от нагрузки (рис. 1., б), а мощность источника конечна. Электрическая схема реального генератора ЭДС представляет собой последовательное соединение идеального генератора ЭДС Е и его внутреннего сопротивления Ri.

Схемы источников ЭДС: а - идеального; б - реального

На практике для того чтобы приблизить режим работы реального генератора ЭДС к режиму работы идеального, внутреннее сопротивление реального генератора Ri стараются делать как можно меньше, а сопротивление нагрузки R н необходимо подключать величиной не менее чем в 10 раз большей величины внутреннего сопротивления генератора, т.е. необходимо выполнять условие: R н >> Ri

Для того чтобы выходное напряжение реального генератора ЭДС не зависело от нагрузки, его стабилизируют применением специальных электронных схем стабилизации напряжения.

Поскольку внутреннее сопротивление реального генератора ЭДС не может быть выполнено бесконечно малым, его минимизируют и выполняют стандартным для возможности согласованного подключения к нему потребителей энергии. В радиотехнике величины стандартного выходного сопротивления генераторов ЭДС составляют 50 Ом (промышленный стандарт) и 75 Ом (бытовой стандарт).

Например, все телевизионные приемники имеют входное сопротивление 75 Ом и подключены к антеннам коаксиальным кабелем именно такого волнового сопротивления.

Для приближения к идеальным генераторам ЭДС источники питающего напряжения, используемые во всей промышленной и бытовой радиоэлектронной аппаратуре, выполняют с применением специальных электронных схем стабилизации выходного напряжения, которые позволяют выдерживать практически неизменное выходное напряжение источника питания в заданном диапазоне токов, потребляемых от источника ЭДС (иногда его называют источником напряжения).

На электрических схемах источники ЭДС изображаются так: Е - источник постоянной ЭДС, е(t) - источник гармонической (переменной) ЭДС в форме функции времени.

Электродвижущая сила Е батареи последовательно соединенных одинаковых элементов равна электродвижущей силе одного элемента Е, умноженной на число элементов n батареи: Е = nЕ.

ЭДС, анализ крови: что это? Подробная расшифровка анализа

Анализ крови на ЭДС - что это? Экспресс-диагностика сифилиса, которая обозначается аббревиатурой ЭДС, представляет собой один из нетрепонемных серологических исследовательских методов анализа крови. Данный тест предложил иммунолог из Германии А. Вассерман, и он был назван в его честь – реакция Вассермана, или RW. Основные его достоинства – дешевизна, простота, быстрый результат.

На ЭДС кровь сдается в период скринингов, то есть массовых обследований, для определения заболеваний у здоровых, на первый взгляд, людей, у которых отсутствуют какие-либо тревожные симптомы. В настоящее время такой тест считается устаревшим и заменяется другими, но до сих пор, когда речь идет о нетрепонемном обнаружении сифилиса, применяется такое выражение - «сдать кровь на RW».

Описание анализа крови ЭДС и его назначение

Анализ крови на ЭДС сдается не только теми пациентами, которые подозревают, что у них есть заболевание, либо намереваются подтвердить уже поставленный диагноз, но и в обязательном порядке донорами крови и беременными женщинами. Терапия сифилиса может осуществляться посредством применения антибиотиков, но невылеченное заболевание перерастает в хроническую форму, поражающую все органы человеческого организма, а также характеризуется постоянными ремиссиями и рецидивами.

Проводят тест в следующих случаях:

  • Если имеется подозрение на заболевание сифилисом.
  • Для подтверждения диагноза - скрытого сифилиса.
  • В случае необходимости проверки доноров.
  • Тесты при беременности.
  • Скрининг.

Сколько времени делается анализ крови на ЭДС? Этот тест очень оперативный. Уже через полчаса можно анализировать результат.

Переносчик

В качестве переносчика сифилиса выступает заболевший пациент и жидкости его тела. Возможно заражение половым путем, через кровь либо посредством применения предметов личной гигиены. Обычно причиной заболевания становятся беспорядочные сексуальные контакты. Чем раньше будет диагностирована патология, тем быстрее и проще становится лечение. Чтобы пройти тест, можно просто сдать натощак кровь. Если не требуются никакие другие анализы, кроме ЭДС, то нужно лишь не употреблять пищевые продукты в течение восьми часов. За день до проведения анализа соблюдать специальную диету не требуется. Обычно кровь берется из вены, однако возможно и из пальца, поскольку не нужно большое ее количество. Что это - ЭДС (анализ крови)? Рассмотрим подробнее.

Если обнаружены антитела

При обнаружении антител можно судить о проникновении инфекции в организм человека в определенной степени. Принимающий участие в тесте кардиолипин является таким веществом, которое извлекается из бычьего сердца. Особый кардиолипиновый раствор соединяется с небольшим количеством крови в стеклянных лунках. Полученный раствор оценивается через полчаса на количество получившегося осадка.

Необходимо помнить о возможных погрешностях. Положительный результат не всегда говорит о том, что пациент болен. Хотя тест является достаточно эффективным, он в любом случае нуждается в подтверждении другими анализами, поэтому кровь нужно сдать несколько раз. Особенно это относится к беременным женщинам. Кроме определения диагноза, данный тест дает возможность выявления стадии заболевания от первой до четвертой. Лечение назначается на основе полученных сведений.

Не все знают, что это - анализ крови на ЭДС.

Расшифровка анализа на сифилис и показатели нормы

При процедуре ЭДС затруднительно говорить об определенной норме или ее нарушениях. Результат в этом случае либо отрицательный, либо положительный. Но помимо этого существуют еще и титры, которые показывают, в каком количестве присутствуют антитела в крови. Каждый конкретный результат расшифровывать должен специалист. Имеется большое количество различных тонкостей, в связи с чем не нужно делать преждевременные выводы и пытаться самостоятельно расшифровать анализ или найти ответ на вопрос, что это такое - анализ крови на ЭДС - с помощью интернета.

Классовая принадлежность клеток lgM или lgG

Указывается классовая принадлежность клеток lgM или lgG: при попадании в организм трепонемы иммунная система начинает бурно реагировать на проникновение инородных клеток. Сначала формируются такие антитела, как lgM. Обнаружить их можно уже через неделю после того, как человек заразился. lgG же появляются в организме приблизительно через месяц и способны сохраняться в нем на протяжении длительного периода, даже если болезнь была успешно вылечена. Присутствие данного класса может служить указанием того, что в организме была выработана устойчивая реакция иммунитета к бледной трепонеме.

При отрицательном результате и указанных при этом титрах со словом lgG рядом с ними можно судить о вторичном характере сифилиса. То есть в крови имеются антитела к бледной трепонеме, однако это антитела памяти, способные долго циркулировать в организме уже после выздоровления пациента. Подобный анализ в некоторых случаях может быть положительным, хотя на самом деле он ложноположительный. Для точного определения требуется учет всех предыдущих результатов исследований и наблюдение за уменьшением титра. Все последующие анализы при этом могут продолжать давать положительный результат.

Расшифровку анализа крови на ЭДС должен проводить высококвалифицированный специалист.

Как определить степень поражения?

Он может давать как положительный, так и отрицательный результат. Поражение тем серьезнее, чем большее количество плюсов имеется в показателях.

  • слабоположительная реакция - + и ++ (если плюс один, то результат является сомнительным);
  • положительная - +++;
  • резко положительная - ++++.

По результатам анализа указываются титры антител. При проведении исследования для контроля терапии титры позволяют определить, выздоравливает ли пациент. Как правило, больной после лечения находится под наблюдением специалистов на протяжении года. За этот период он несколько раз проходит тестирование. Об эффективности терапии также свидетельствует снижение титров за год в четыре и более раз. При отсутствии иммуноглобулинов IgM в крови можно говорить об отсутствии возобновления инфекции. Присутствие же IgG возможно в течение длительного времени после лечения, а порой даже всю жизнь.

Положительный результат анализа крови ЭДС

Что это? Нужно помнить о том, что у этого метода есть определенные недостатки. Исследование назначается для того, чтобы подтвердить подозрения, однако на достоверный результат рассчитывать можно далеко не во всех случаях.

Реакция Вассермана способна иметь положительные показатели не только при сифилисе, но и при малярии, волчанке, туберкулезе. К сожалению, более эффективный и точный метод все еще отсутствует. Зачастую такой анализ проводится одновременно с остальными для более полной картины. У беременных женщин результат может оказаться положительным даже при отсутствии каких-либо патологий. Он способен стать ложным также во время менструации. Сколько делается анализ крови на ЭДС, лучше узнать заранее.

Перепроверить тест

При получении положительного результата необходимо перепроверить его несколько раз. Пациент имеет право сдавать другие тесты и требовать подтверждения, поскольку ЭДС не является надежным на 100 %. Если же появляются язвы, шанкры, при этом они не болят и не кровоточат, можно судить о том, что произошло заражение. Нужно сразу же обратиться к специалисту. Пациент должен узнать все подробности терапии, действие и состав назначенных препаратов.

При беременности возможно профилактическое лечение, и от него не нужно отказываться. Если женщина до беременности лечилась от сифилиса (либо на ранних ее сроках), врач может назначить профилактический медикаментозный курс. Также пациент имеет право требовать абсолютной анонимности. О диагнозах и терапии врач распространяться не может.

Не нужно откладывать лечение, поскольку на начальных этапах оно происходит быстрее. Необходимо отказаться от жирных и тяжелых продуктов, алкоголя и всего, что может осложнить процесс выздоровления.

Мы рассмотрели ЭДС - анализ крови. Что это, теперь понятно.

Что такое ЭДС и в она чем измеряется?

Когда родилось понятие «электрон», люди сразу связали его с определенной работой. Электрон – это по-гречески «янтарь». То, что грекам для того, чтобы найти этот бесполезный, в общем-то, магический камушек, надо было довольно далеко проехать на север - такие усилия тут, в общем-то, не в счет. А вот стоило проделать некоторую работу - руками по натиранию камушка о шерстяную сухую тряпочку - и он приобретал новые свойства. Это знали все. Натереть просто так, ради сугубо бескорыстного интереса, чтобы понаблюдать, как теперь к «электрону» начинает притягиваться мелкий мусор: пылинки, шерстинки, ниточки, перышки. В дальнейшем, когда появился целый класс явлений, объединенных потом в понятие «электричество», работа, которую надо обязательно затратить, не давала людям покоя. Раз нужно затратить, чтобы получился фокус с пылинками - значит, хорошо бы эту работу как-то сохранить, накопить, а потом и получить обратно.

Таким образом из все более усложнявшихся фокусов с разными материалами и философских рассуждений и научились эту магическую силу собирать в баночку. А потом сделать и так, чтобы она из баночки постепенно высвобождалась, вызывая действия, которые стало уже можно ощутить, а очень скоро и померить. И померили настолько остроумно, имея всего-то пару шелковых шариков или палочек и пружинные крутильные весы, что и теперь мы вполне серьезно пользуемся все теми же формулами для расчетов электрических цепей, которые уже пронизали теперь всю планету, бесконечно сложных, сравнительно с теми первыми приспособлениями.

А название этого могучего джинна, сидящего в баночке, так до сих пор и содержит восторг давних открывателей: «Электродвижущая сила». Но только сила эта - совсем не электрическая. А наоборот, посторонняя страшная сила, заставляющая электрические заряды двигаться «против воли», то есть преодолевая взаимное отталкивание, и собираться где-то с одной стороны. От этого получается разность потенциалов. Ее и можно использовать, пустив заряды другим путем. Где их «не сторожит» эта страшная ЭДС. И заставить, тем самым, выполнить некоторую работу.

Принцип работы

ЭДС - это сила самой разной природы, хотя измеряется она в вольтах:

Электризация, как первоначально предполагали, происходит именно от «трения», то есть, натирая янтарь тряпкой, мы «срываем» с его поверхности электроны. Однако исследования показали, что здесь не так все просто. Оказывается, на поверхности диэлектриков всегда имеются неравномерности заряда, и к этим неравномерностям притягиваются ионы из воздуха. Образуется такая воздушно-ионная шуба, которую мы и повреждаем, натирая поверхность.

  • Термоэмиссионной. При нагревании металлов с их поверхности срываются электроны. В вакууме они достигают другого электрода и наводят там отрицательный потенциал. Очень перспективное сейчас направление. На рисунке приведена схема защиты гиперзвукового летательного аппарата от перегрева частей корпуса встречным потоком воздуха, причем термоэлектроны, испускаемые катодом (который при этом охлаждается - одновременное действие эффектов Пельтье и/или Томсона), достигают анода, наводя на нем заряд. Заряд, вернее, напряжение, которое равно полученной ЭДС, можно использовать в цепи потребления внутри аппарата.

1 - катод, 2 - анод, 3, 4 - отводы катода и анода, 5 - потребитель

  • Пьезоэлектрической. Многие кристаллические диэлектрики, когда испытывают механическое давление на себя в каком-либо направлении, реагируют на него наведением разницы потенциалов между своими поверхностями. Эта разность зависит от приложенного давления, поэтому уже используется в датчиках давления. Пьезоэлектрические зажигалки для газовых плит не требуют никакого другого источника энергии - только нажатия пальцем на кнопочку. Известны попытки создания пьезоэлектрической системы зажигания в автомобилях на основе пьезокерамики, получающей давление от системы кулачков, связанных с главным валом двигателя. «Хорошие» пьезоэлектрики - у которых пропорциональность ЭДС от давления высоко точна - бывают очень тверды (например, кварц), при механическом давлении почти не деформируются.

То, что единицей измерения ЭДС является единица электрического напряжения, понятно. Так как самые разнородные механизмы, создающие электродвижущую силу источника тока, все преобразуют свои виды энергии в движение и накопление электронов, а это в конечном счете и приводит к появлению такого напряжения.

Ток, возникающий от ЭДС

Электродвижущая сила источника тока на то и движущая сила, что электроны от нее начинают двигаться, если замкнуть электрическую цепь. Их к этому принуждает ЭДС, пользуясь своей неэлектрической «половиной» природы, которая не зависит, все-таки, от половины, связанной с электронами. Так как считается, что ток в цепи течет от плюса к минусу (такое определение направления было сделано раньше, чем все узнали, что электрон - отрицательная частица), то внутри прибора с ЭДС ток делает движение завершающее - от минуса к плюсу. И всегда рисуют у знака ЭДС, куда направлена стрелочка – +. Только в обоих случаях - и внутри ЭДС источника тока, и снаружи, то есть в потребляющей цепи, - мы имеем дело с электрическим током со всеми его обязательными свойствами. В проводниках ток наталкивается на их сопротивление. И здесь, в первой половине цикла, имеем сопротивление нагрузки, во второй, внутренней, - сопротивление источника или внутреннее сопротивление.

Внутренний процесс работает не мгновенно (хотя очень быстро), а с определенной интенсивностью. Он совершает работу по доставке зарядов от минуса к плюсу, и это тоже встречает сопротивление…

Сопротивление это двоякого рода.

  1. Внутреннее сопротивление работает против сил, разъединяющих заряды, оно имеет природу, «близкую» этим разъединяющим силам. По крайней мере, работает с ними в едином механизме. Например, кислота, отбирающая кислород у двуокиси свинца и замещающая его на ионы SO 4 -, определенно испытывает некоторое химическое сопротивление. И это как раз и проявляется как работа внутреннего сопротивления аккумулятора.
  2. Когда наружная (выходная) половина цепи не замкнута, появление все новых и новых электронов на одном из полюсов (и убывание их с другого полюса) вызывает усиление напряженности электростатического поля на полюсах аккумулятора и усиление отталкивания между электронами. Что позволяет системе «не идти вразнос» и остановиться на некотором состоянии насыщенности. Больше электронов из аккумулятора наружу не принимается. И это внешне выглядит как наличие постоянного электрического напряжения между клеммами аккумулятора, которое называется U хх, напряжением холостого хода. И оно численно равно ЭДС - электродвижущей силе. Поэтому и единицей измерения ЭДС является вольт (в системе СИ).

Но если только подключить к аккумулятору нагрузку из проводников, имеющих отличное от нуля сопротивление, то немедленно потечет ток, сила которого определяется по закону Ома.

Померить внутреннее сопротивление источника ЭДС, казалось бы, можно. Стоит включить в цепь амперметр и шунтировать (закоротить) внешнее сопротивление. Однако внутреннее сопротивление настолько низко, что аккумулятор начнет разряжаться катастрофически, вырабатывая огромное количество теплоты, как на внешних закороченных проводниках, так и во внутреннем пространстве источника.

Однако можно поступить иначе:

  1. Измерить E (помним, напряжение холостого хода, единица измерения - вольт).
  2. Подключить в качестве нагрузки некоторый резистор и померить падение напряжения на нем. Вычислить ток I 1 .
  3. Вычислить значение внутреннего сопротивления источника ЭДС можно, воспользовавшись выражением для r

Обычно способность аккумулятора выдавать электроэнергию оценивается его энергетической «емкостью» в амперчасах. Но интересно было бы посмотреть, какой максимальный ток он может вырабатывать. Несмотря на то, что, быть может, электродвижущая сила источника тока заставит его взорваться. Так как идея устроить на нем короткое замыкание показалась не очень заманчивой, можно вычислить эту величину чисто теоретически. ЭДС равно U хх. Просто нужно дорисовать график зависимости падения напряжения на резисторе от тока (следовательно, и от сопротивления нагрузки) до точки, в которой сопротивление нагрузки будет равно нулю. Это точка I кз, пересечения красной линии с линией координаты I, в которой напряжение U стало нулевым, а все напряжение E источника будет падать на внутреннее сопротивление.

Часто кажущие простыми основные понятия не всегда бывает можно понять без привлечения примеров и аналогий. Что такое электродвижущая сила, и как она работает, можно представить, только рассмотрев множество ее проявлений. А стоит рассмотреть определение ЭДС, как оно дается солидными источниками посредством умных академических слов - и все начинай с начала: электродвижущая сила источника тока. Или просто выбей на стене золотыми буквами:

Расшифровка эдс

Словарь: С. Фадеев. Словарь сокращений современного русского языка. - С.-Пб.: Политехника, 1997. - 527 с.

экспериментальная диспетчерская служба

экономика дорожного строительства

образование и наука, фин.

электронные денежные средства

Электроинжиниринг, диагностика и сервис

эквиваленты денежных средств

Словарь сокращений и аббревиатур. Академик. 2015 .

Смотреть что такое «ЭДС» в других словарях:

эдс - см. Электродвижущая сила. * * * ЭДС ЭДС, см. Электродвижущая сила (см. ЭЛЕКТРОДВИЖУЩАЯ СИЛА) … Энциклопедический словарь

ЭДС - см. Электродвижущая сила … Большой Энциклопедический словарь

ЭДС - ЭДС трёхбуквенная аббревиатура. Может означать: Электродвижущая сила электростатический двигатель эквиваленты денежных средств, см. денежные средства экономика дорожного строительства экспериментальная диспетчерская служба экспресс… … Википедия

эдс - сущ., кол во синонимов: 1 термоэдс (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

ЭДС - [эдэ эс], нескл., жен. (сокр.: электродвижущая сила) … Русский орфографический словарь

ЭДС - см … Большая политехническая энциклопедия

ЭДС - EMF ЭДС. Аббревиатура электродвижущей силы. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал, НПО Мир и семья; Санкт Петербург, 2003 г.) … Словарь металлургических терминов

ЭДС - см. Электродвижущая сила … Естествознание. Энциклопедический словарь

ЭДС - электродвижущая сила electromotive force (EMF) … Универсальный дополнительный практический толковый словарь И. Мостицкого

ЭДС - электродвижущая сила … Словарь сокращений русского языка

ЭДС (электродвижущая сила) для начинающих физиков: что это такое?

Что такое ЭДС (электродвижущая сила) в физике? Электрический ток понятен далеко не каждому. Как космическая даль, только под самым носом. Вообще, он и ученым понятен не до конца. Достаточно вспомнить Николу Тесла с его знаменитыми экспериментами, на века опередившими свое время и даже в наши дни остающимися в ореоле тайны. Сегодня мы не разгадываем больших тайн, но пытаемся разобраться в том, что такое ЭДС в физике.

Определение ЭДС в физике

ЭДС – электродвижущая сила. Обозначается буквой E или маленькой греческой буквой эпсилон.

Электродвижущая сила - скалярная физическая величина, характеризующая работу сторонних сил (сил неэлектрического происхождения), действующих в электрических цепях переменного и постоянного тока.

ЭДС, как и напряжение, измеряется в вольтах. Однако ЭДС и напряжение – явления разные.

Напряжение (между точками А и Б) – физическая величина, равная работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из одной точки в другую.

Объясняем суть ЭДС «на пальцах»

Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.

Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно, чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.

То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.

Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Дорогие друзья, сегодня мы рассмотрели тему «ЭДС для чайников». Как видим, ЭДС – сила неэлектрического происхождения, которая поддерживает протекание электрического тока в цепи. Если Вы хотите узнать, как решаются задачи с ЭДС, советуем обратиться к нашим авторам – скрупулезно отобранным и проверенным специалистам, которые быстро и доходчиво разъяснят ход решения любой тематической задачи. И по традиции в конце предлагаем Вам посмотреть обучающее видео. Приятного просмотра и успехов в учебе!

ЭДС электродвижущая сила

Для поддержаниязаданного значения электрического тока в проводнике требуется какой-то внешний источник энергии, который все время обеспечивал бы нужную разность потенциалов на концах этого проводника. Такими источниками энергии являются так называемые источники электрического тока, обладающие какой-то заданной электродвижущей силой , которая способна создать и длительное время поддерживать разность потенциалов.

Электродвижущая сила или сокращенно ЭДС обозначается латинской буквой Е. Единицей измерения ЭДС является вольт . Таким образом, чтобы получить непрерывное движение электрического тока в проводнике, нужна электродвижущая сила, т. е. требуется источник электрического тока.

Историческая справка . Первым подобным источником тока в электротехнике являлся «вольтов столб», который был сделан из нескольких медных и цинковых кружков, проложенных коровьей кожей, смоченной в слабом растворе кислоты. Таким образом, самым простым способом получения электродвижущей силы считается химическое взаимодействие ряда веществ и материалов, в результате чего химическая энергия преобразуется в электрическую энергию. Источники питания, в которых подобным методом генерируется электродвижущая сила ЭДС, получили название химических источников тока.

Сегодня химические источники питания - батарейки и все возможные виды аккумуляторов - получили огромное распространение в электронике и электротехнике, а также электроэнергетике.

Также распространены и различные виды генераторов, которые в роли единственного источника, способны запитать электрической энергией промышленные предприятия, дать освещение в города, на фунционирование систем железных дорог, трамваев и метро.

ЭДС действует совершенно одинаково как на химические источники, так и на генераторы. Ее действие заключается в создании разности потенциалов на каждом из зажимов источника питания и поддержании ее в течение всего необходимого времени. Зажимы источника питания называют полюсами. На одном из полюсов всегда создается нехватка электронов, т.е. такой полюс имеет положительный заряд и маркируется «+», а на другом наоборот создается повышенная концентрация свободных электронов, т.е. этот полюс имеет отрицательный заряд и маркируется знаком « - ».

Источники ЭДС применяются для подключения различных приборов и устройств, являющихся потребителями электрической энергии. С помощью проводов потребители подключаются к полюсам источников тока, так что получается замкнутая электрическая цепь. Разность потенциалов, возникшая в замкнутой электроцепи получило название напряжение и обозначают латинской буквой «U». Единица измерения напряжения один вольт . Например, запись U=12 В говорит о том, что напряжение источника ЭДС составляет 12 В.

Для того, чтобы измерить напряжение или ЭДС применяют специальный измерительный прибор - вольтметр .

При необходимости осуществить правильные измерения ЭДС или напряжения источника питания, вольтметр подсоединяют напрямую к полюсам. При разомкнутой электрической цепи вольтметр будет показывать ЭДС. При замкнутой цепи вольтметр выведит на дисплей значение напряжение на каждом зажиме источника питания. PS: Источник тока всегда развивает большую ЭДС, чем напряжение на зажимах.

Электродвижущая сила

В физике такое понятие, как электродвижущая сила (сокращенно – ЭДС) используется в качестве основной энергетической характеристики источников тока.

Электродвижущая сила (ЭДС)

Электродвижущая сила (ЭДС) – способность источника энергии создавать и поддерживать на зажимах разность потенциалов.

Напряжение на зажимах источника всегда меньше ЭДС на величину падения напряжения.

U RH – напряжение на зажимах источника. Измеряется при замкнутой внешней цепи.

Е – ЭДС – измеряется на заводе изготовителе.

Электродвижущая сила (ЭДС) представляет собой физическую величину, которая равна частному от деления той работы, которая при перемещении электрического заряда совершается сторонними силами в условиях замкнутой цепи, к самому этому заряду.

Следует заметить, что электродвижущая сила в источнике тока возникает и при отсутствии самого тока, то есть тогда, когда цепь является разомкнутой. Такую ситуацию принято именовать «холостым ходом», а сама величина ЭДС при ней равняется разнице тех потенциалов, которые имеются на зажимах источника тока.

Химическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами.

Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми. При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью. Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно.

В отличие от гальванических элементов аккумуляторы предполагают многократное использование. Это возможно потому, что те химические реакции, которые в них протекают, имеют обратимый характер.

Электромагнитная ЭДС возникает при функционировании таких устройств, как динамо-машины, электродвигатели, дроссели, трансформаторы и т.п.

Суть ее состоит в следующем: при помещении проводников в магнитное поле и их перемещении в нем таким образом, чтобы происходило пересечение магнитных силовых линий, происходит наведение ЭДС. Если цепь замкнута, то в ней возникает электрический ток.

В физике описанное выше явление называется электромагнитной индукцией. Электродвижущую силу, которая при этом индуктируется, именуют ЭДС индукции.

Следует заметить, что наведение ЭДС индукции происходит не только в тех случаях, когда в магнитном поле проводник перемещается, но и тогда, когда он остается неподвижным, но при этом осуществляется изменение величины самого магнитного поля.

Эта разновидность электродвижущей силы возникает тогда, когда наличествует или внешний, или внутренний фотоэффект.

В физике под фотоэффектом (фотоэлектрическим эффектом) подразумевается та группа явлений, которая возникает тогда, когда на вещество воздействует свет, и при этом в нем происходит эмиссия электронов. Это называют внешним фотоэффектом. Если же при этом появляется электродвижущая сила или изменяется электропроводимость вещества, то говорят о внутреннем фотоэффекте.

Сейчас и внешний, и внутренний фотоэффекты очень широко используются для проектирования и производства огромного количества таких приемников светового излучения, которые преобразуют световые сигналы в электрические. Все эти устройства называются фотоэлементами и используются как в технике, так и при проведении разнообразных научных исследований. В частности, именно фотоэлементы используются для того, чтобы производить наиболее объективные оптические измерения.

Что касается этого типа электродвижущей силы, то она, к примеру, возникает при механическом трении, возникающем в электрофорных агрегатах (специальных лабораторных демонстрационных и вспомогательных приборах), она же имеет место быть и в грозовых облаках.

Генераторы Вимшурста (это еще одно название электрофорных машин) для своего функционирования используют такое явление, как электростатическая индукция. При их работе электрические заряды накапливаются на полюсах, в лейденских банках, причем разность потенциалов может достигать очень солидных величин (до нескольких сотен тысяч вольт).

Природа статического электричества заключается в том, что оно возникает тогда, когда из-за потери или приобретения электронов нарушается внутримолекулярное или внутриатомное равновесие.

Эта разновидность электродвижущей силы возникает тогда, когда происходит или сдавливание, или растяжение веществ, называемых пьезоэлектриками. Они широко используются в таких конструкциях, как пьезодатчики, кварцевых генераторах, гидрофонах и некоторых другиех.

Именно пьезоэлектрический эффект положен в основу работы пьезоэлектрических датчиков. Сами они относятся к датчикам так называемого генераторного типа. В них входной величиной является прилагаемая сила, а выходной – количество электричества.

Что касается таких устройств, как гидрофоны, то в основу их функционирования заложен принцип так называемого прямого пьезоэлектрического эффекта, который имеют пьезокерамические материалы. Суть его состоит в том, что если на поверхность этих материалов оказывается звуковое давление, то на их электродах возникает разность потенциалов. При этом она пропорциональна величине звукового давления.

Одной из основных сфер применения пьезоэлектрических материалов является производство кварцевых генераторов, имеющих в своей конструкции кварцевые резонаторы. Предназначены такие устройства для того, чтобы получать колебания строго фиксированной частоты, которые стабильны как по времени, так и при изменении температуры, а также имеют совсем невысокий уровень фазовых шумов.

Эта разновидность электродвижущей силы возникает тогда, когда с поверхности разогретых электродов происходит термоэмиссия заряженных частиц. Термоионная эмиссия на практике применяется достаточно широко, например, на ней основана работа практически всех радиоламп.

Эта разновидность ЭДС возникает тогда, когда на различных концах разнородных проводников или же просто на различных участках цепи температура распределяется очень неоднородно.

Термоэлектрическая электродвижущая сила используется в таких устройствах, как пирометры, термопары и холодильные машины. Датчики, работа которых основана на этом явлении, называются термоэлектрическими, и являются, по сути дела, термопарами, состоящими из спаянных между собой электродов, изготовленных из разных металлов. Когда эти элементы или нагреваются, или охлаждаются, между ними возникает ЭДС, которая по своей величине пропорциональна изменению температуры.

Формула ЭДС

Здесь – ЭДС, – работа сторонних сил, – величина заряда.

Единица измерения напряжения – В (вольт).

ЭДС – скалярная величина. В замкнутом контуре ЭДС равна работе сил по перемещению аналогичного заряда по всему контуру. При этом ток в контуре и внутри источника тока будут течь в противоположных направлениях. Внешняя работа, которая создаёт ЭДС, должна быть не электрического происхождения (сила Лоренца, электромагнитная индукция, центробежная сила, сила, возникающая в ходе химических реакций). Эта работа нужна для преодоления сил отталкивания носителей тока внутри источника.

Если в цепи идёт ток, то ЭДС равна сумме падений напряжений во всей цепи.

Электродвижущая сила

Электродвижущая сила (ЭДС) - скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура .

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого́ источника равна нулю.

Электродвижущая сила источника связана с электрическим током, протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи имеет вид :

Если на участке цепи не действуют сторонние силы (однородный участок цепи ) и, значит, источника тока на нём нет, то, как это следует из закона Ома для неоднородного участка цепи, выполняется:

Значит, если в качестве точки 1 выбрать анод источника, а в качестве точки 2 - его катод, то для разности между потенциалами анода φ a и катода φ k > можно записать:

Из этого соотношения и закона Ома для замкнутой цепи, записанного в виде E = I R e + I r >=IR_ +Ir> нетрудно получить

Из полученного соотношения следуют два вывода:

Таким образом, ЭДС источника тока равна разности потенциалов между его клеммами в состоянии, когда источник отключён от цепи .

Причиной возникновения электродвижущей силы в замкнутом контуре может стать изменение потока магнитного поля, пронизывающего поверхность, ограниченную данным контуром. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

Как показано на рисунке, электрический ток, нормальное направление которого - от «плюса» к «минусу», внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении. Направление от «плюса» к «минусу» совпадает с направлением электрической силы, действующей на положительные заряды. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектрической природы (центробежная сила, сила Лоренца, силы химической природы) которая бы преодолевала электрическую силу.

Oпределение: Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования системы переменного тока одних параметров в систему переменного тока с другими параметрами.




Известно, что передача электроэнергии на дальние расстояния осуществляется на высоком напряжении (220, 400, 500 кВ и более), благодаря чему значительно уменьшаются потери энергии в линии (рис. 4.1.1).
Получить такое высокое напряжение непосредственно в генераторе невозможно, поэтому в начале линии электропередачи устанавливают повышающие трансформаторы, а в конце линии устанавливают понижающие трансформаторы.
Таким образом, переменный ток по пути от электростанции до потребителя подвергается трех-, а иногда и четырехкратному трансформированию.
В зависимости от назначения трансформаторы разделяются на силовые и специальные.
Силовые трансформаторы используются в линиях электропередачи и распределения электроэнергии.
К специальным трансформаторам относятся: печные, выпрямительные, сварочные, автотрансформаторы, измерительные, трансформаторы для преобразования частоты и т.д.
Трансформаторы разделяются на однофазные и многофазные , из которых наибольшее применение имеют трехфазные.
Кроме того, трансформаторы могут быть двухобмоточными (если они имеют по две обмотки) или многообмоточными (если они имеют более двух обмоток). В зависимости от способа охлаждения трансформаторы разделяются на масляные и сухие .

4.2. ПРИНЦИП ДЕЙСТВИЯ И КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ

Простейший трансформатор состоит из магнитопровода и двух расположенных на нем обмоток. Обмотки электрически не связаны друг с другом. Одна из обмоток - первичная , подключена к источнику переменного тока. К другой обмотке - вторичной подключают потребитель.

Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I 1 , который создает в магнитопроводе переменный магнито-поток Ф. Замыкаясь в магнитопроводе, этот поток пронизывает обе обмотки, индуктируя в них ЭДС:

Из этих формул следует, что вычисленные ЭДС е 1 и е 2 могут отличаться друг от друга числами витков в обмотках. Применяя обмотки с различным соотношением витков, можно изготовить трансформатор на любое отношение напряжений.
При подключении ко вторичной обмотке нагрузки z н в цепи потечет ток I 2 и на выводах вторичной обмотки установится напряжение U 2 .
Обмотка трансформатора, подключенная к сети c более высоким напряжением, называется обмоткой высшего напряжения (ВН); обмотка, присоединенная к сети меньшего напряжения, называется обмоткой низшего напряжения (НН).
Трансформаторы - обратимые аппараты, т.е. могут работать как повышающими, так и понижающими.
Основными частями трансформатора являются его магнитопровод и обмотки. Магнитопровод выполняется из тонких листов электротехнической стали. Перед cборкой листы изолируются друг от друга лаком или окалиной. Это дает возможность в значительной мере ослабить в нем вихревые токи и уменьшить потери на перемагничивание.
Трансформаторы бывают стержневыми и броневыми . Наиболее широкое распространение получили стержневые трансформаторы.
Трансформаторы броневого типа имеют разветвленный магнитопровод с одним стержнем и ярмами, частично прикрывающими (бронирующими) обмотки.
В трехфазном трансформаторе применяют трехстержневой магнитопровод, который похож на броневой, но обмотки на нем расположены на всех трех стержнях.

По способу сочленения стержней с ярмами различают шихтованные магнитопроводы и стыковые . В работе удобнее шихтованные магнитопроводы, т.к. воздушный зазор в местах сочленения у них меньше и они прочнее.
Форма поперечного сечения стержней зависит от мощности трансформатора: в небольших - это прямоугольник, а в средних и крупных - ступенчатое сечение.

Обмотки трансформаторов выполняют из медных проводов круглого и прямоугольного сечения, изолированных хлопчатобумажной пряжей или кабельной бумагой.
По взаимному расположению обмоток ВН и НН и по способу их размещения на стержнях различают обмотки концентрические и дисковые .

В масляных трансформаторах магнитопровод с обмотками помещается в бак, заполненный маслом, которое отбирает от них тепло, передавая его стенкам бака. Кроме того, электрическая прочность масла выше, чем у воздуха, что обеспечивает более надежную работу высоковольтных трансформаторов.
Для увеличения охлаждающей поверхности применяются трубчатые баки.
При нагревании масло расширяется. Излишек его попадает из общего бака в бак-расширитель, установленный на крышке трансформатора.
Для предотвращения аварии у трансформаторов напряжением 1000 кВ и выше на расширителе устраивают выхлопную трубу, закрытую мембраной - стеклянной пластиной. При образовании в баке большого количества газов мембрана выдавливается, и газы выходят наружу.

4.3. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ.
УРАВНЕНИЕ ЭДС

Как видно из рис. 4.2.1, основной магнитный поток Ф, действующий в магнито-проводе трансформатора, сцепляется с витками обмоток и наводит в них ЭДС:

Предположим, что магнитный поток Ф является синусоидальной функцией, т.е.

Подставим это значение в выражения для ЭДС и, произведя дифференцирование, получим:

Из последних формул видно, что ЭДС е 1 и е 2 отстают по фазе от потока Ф на угол p /2.

Максимальное значение ЭДС:

Переходя к действующим значениям, имеем

Если Ф mах выражено в максвеллах, а Е в вольтах, то

Отношение ЭДС обмотки высшего напряжения к ЭДС обмотки низшего напряжения называется коэффициентом трансформации.

Подставив вместо ЭДС Е 1 и Е 2 их значения, получим:

Токи I 1 и I 2 , протекающие по обмоткам трансформатора, помимо основного потока Ф создают магнитные потоки рассеяния Ф Р1 и Ф Р2 (рис. 4.2.1). Каждый из этих потоков сцепляется только с витками собственной обмотки и индуктирует в них реактивные ЭДС рассеяния Е Р1 и Е Р2 . Величины этих ЭДС прямо пропорциональны возбуждающим их токам:

где x 1 и x 2 - индуктивные сопротивления рассеяния обмоток.
Кроме этого, в каждой обмотке трансформатора имеет место активное падение напряжения, которое компенсируется своей ЭДС:

Рассмотрим действие изученных выше ЭДС в обмотках трансформатора.
В первичной обмотке Е 1 представляет собой ЭДС самоиндукции, а поэтому она направлена против первичного напряжения u 1 . В связи с этим уравнение ЭДС для первичной обмотки имеет вид:

Величины j I 1 x 1 и I 1 r 1 представляют собой падение напряжений в первичной обмотке трансформатора. Обычно j I 1 x 1 и I 1 r 1 невелики, а поэтому, с некоторым приближением, можно считать, что подведенное к трансформатору напряжение u 1 уравновешивается ЭДС Е 1:


Во вторичной обмотке Е 2 выполняет роль источника тока, поэтому уравнение ЭДС для вторичной обмотки имеет вид:

где j I 2 x 2 и I 2 r 2 - падение напряжения во вторичной обмотке.
При холостом ходе трансформатора первичная обмотка включена на напряжение u 1 , а вторичная разомкнута (I 2 = 0).
При этих условиях в трансформаторе действует только одна намагничивающая сила первичной обмотки I 10 w 1 , созданная током I 10 , которая наводит в магнитопроводе трансформатора основной магнитный поток:

где Rм - магнитное сопротивление магнитопровода потоку.
При подключении к вторичной обмотке нагрузки ZН в ней возникает ток I 2 . При этом ток в первичной обмотке увеличивается до значения I 1 .
Теперь поток Ф создается действием двух намагничивающих сил I 1 w 1 и I 2 w 2 .

Из выражения


видно, что основной поток Ф0 не зависит от нагрузки трансформатора, при неизменом напряжении u 1 . Этот вывод дает право приравнять:

4.4.

Разделим обе части уравнения на w 1 , получим:

где - вторичный ток, приведенный к числу витков первичной обмотки.
Перепишем уравнение

из которого следует, что ток I 1 имеет две составляющие: одна из них (I 10) затрачивается на создание основного потока в магнитопроводе, а другая (- I 2 ") компенсирует размагничивающее действие вторичного тока.
Любое изменение тока во вторичной цепи трансформатора всегда сопровождается соответствующим изменением первичного тока. В итоге величина потока Ф (а, следовательно, и ЭДС Е 1) остаются практически неизменными.
Вследствие перемагничивания стали в магнитопроводе трансформатора возникают потери энергии от гистерезиса и вихревых токов. Мощность этих потерь эквивалентна активной составляющей тока I 10 . Следовательно, ток I 10 наряду с реактивной составляющей Iоp, идущей на создание основного потока Ф, имеет еще и активную составляющую Iоа. В итоге:

На рис. 4.4.1 приведена векторная диаграмма трансформатора в режиме холостого хода.
Обычно ток Iоа не превышает 10% от тока Io, поэтому незначительно влияет на величину I 10 . Обычно он равен (0,02 0,1) I 1 , поэтому при нагрузке I 10 принимаем равным нулю, и тогда:

т. е. отношение токов обратно пропорционально числам витков обмоток.

Заключая разделы 4.3 и 4.4, перепишем вместе уравнения ЭДС и токов трансформатора:

Эти уравнения получили название основных уравнений , на которых базируется теория трансформатора и общая теория электрических машин переменного тока.

4.5.ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР

В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки. Разница наиболее ощутима при больших коэффициентах трансформации, что затрудняет расчеты и (особенно) построение векторных диаграмм. Векторы электрических величин, относящиеся к первичной обмотке, значительно отличаются по своей длине от одноименных векторов вторичной обмотки. Затруднения можно устранить, если привести все параметры трансформатора к одинаковому числу витков, например, к w 1 . С этой целью параметры вторичной обмотки пересчитываются на число витков w 1 .
Таким образом, вместо реального трансформатора с коэффициентом трансформации получают эквивалентный трансформатор с
Такой трансформатор называется приведенным . Приведение параметров трансформатора не должно отразиться на его энергетическою процессе, т.е. все мощности и фазы вторичной обмотки должны остаться такими же, что и в реальном трансформаторе.
Так, например, если полная мощность вторичной обмотки реального трансформатора то она должна быть равна полной мощности вторичной обмотки приведенного трансформатора:

Используя ранее полученное выражение I 2 " = I 2 w 2 /w 1 , напишем выражение для E 2 " :

Приравняем теперь активные мощности вторичной обмотки:

Определим приведенное активное сопротивление:

по аналогии:

Уравнения ЭДС и токов для приведенного трансформатора теперь будут иметь вид:

4.6.ЭКВИВАЛЕНТНАЯ СХЕМА ТРАНСФОРМАТОРА

Одним из методических приемов, облегчающих исследование электромагнитных процессов и расчет трансформаторов, является замена реального трансформатора с магнитными связями между обмотками эквивалентной электрической схемой (рис. 4.6.1).

На этом рисунке представлена эквивалентная схема приведенного трансформатора, на которой сопротивления г и х условно вынесены из соответствующих обмоток и включены с ними последовательно. Т.к. k = 1, то E 1 = E 2 . Поэтому точки А и а, а также Х и х на приведенном трансформаторе имеют одинаковые потенциалы, что позволит электрически соединить эти точки, получив Т-образную эквивалентную схему замещения (рис. 4.6.2).

Произведя математическое описание этой схемы методами Кирхгофа, можно сделать вывод о том, что она полностью соответствует уравнениям ЭДС и токов реального трансформатора (см. раздел 4.5). Отсюда появляется возможность электрического моделирования трансформатора на ЭВМ. Проводя исследования относительно нагрузки z 2 " (единственного переменного параметра схемы), можно прогнозировать реальные ха-рактеристики трансформатора, начиная от холостого хода (z 2 " =) и кончая коротким замыканием (z 2 " = 0).

4.7. ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ

Построение векторной диаграммы удобнее начинать с вектора основного потока Ф. Отложим его по оси абсцисс. Вектор I 10 опережает его на угол a . Далее строим векторы ЭДС Е 1 и Е 2 " , которые отстают от потока Ф на 90°. Для определения угла сдвига фаз между E 2 " и I 2 " следует знать характер нагрузки. Предположим, она - активно-индуктивная. Тогда I 2 " отстает от E2" на угол f 2 .
Получилась так называемая заготовка векторной диаграммы (рис. 4.7.1.). Для того чтобы достроить ее, необходимо воспользоваться тремя основными уравнениями приведенного трансформатора.

Воспользуемся вторым основным уравнением:

и произведем сложение векторов.
Для этого к концу вектора E 2 " пристроим вектор - j I 2 " x 2 " , а к его концу - вектор - I 2 " r 2 " . Результирующим вектором U 2 " будет вектор, соединяющий начало координат с концом последнего вектора.
Теперь используем третье основное уравнение

из которого видно, что вектор тока I 1 состоит из геометрической суммы векторов I 10 и - I 2 ". Произведем это суммирование и достроим векторную диаграмму.
Теперь вернемся к первому основному уравнению:

Чтобы построить вектор - Е 1 , нужно взять вектор +Е 1 и направить его в противоположную сторону.
Теперь можно складывать с ним и другие векторы: + j I 1 x 1 и I 1 r 1 . Первый будет идти перпендикулярно току, а второй - параллельно ему. В результате получим суммарный вектор u 1 .
Построенная векторная диаграмма имеет общий характер. По этой же методике можно осуществить ее построение как для различных режимов, так и для разных характеров нагрузки.

4.8.ПОТЕРИ И КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

В работающем трансформаторе всегда имеются как магнитные, так и электрические потери. Магнитные потери слагаются из потерь на вихревые токи и гистерезис.

Величина этих потерь зависит от напряжения u 1 и магнитной индукции В. Можно считать, что при U 1 = const, р он = В 2 . Они не зависят от нагрузки, т.е. являются постоянными. Электрические потери в обмотках, наоборот, переменные, т.е.:

где р кн - соответствует потерям при коротком замыкании трансформатора.
Если известны потери короткого замыкания при номинальной нагрузке, то электрические потери можно определить по формуле:

где - коэффициент загрузки трансформатора.
Общие потери в трансформаторе:

КПД представляет собой отношение активной мощности Р2, отбираемой от трансформатора, к активной модности Р1, подводимой к трансформатору:

Мощность Р 2 подсчитывается по формуле:

где - номинальная мощность, кВт.

Мощность

тогда КПД трансформатора

Как видно из последней формулы, величина К.П.Д. зависит от загрузки трансформатора. Кроме того, К.П.Д. тем больше, чем выше cos f 2 . Максимальный КПД соответствует такой загрузке, при которой магнитные потери равны электрическим потерям:

Отсюда значение коэффициента загрузки, соответствующее максимальному К.П.Д., равно:

Обычно К.П.Д. имеет максимальное значение при b = 0,5 - 0,6. Тогда
h = 0,98 - 0,99.

4.9.ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

4.9.1. Общие положения

Для трансформирования энергии в трехфазных системах используют либо группу из трех однофазных трансформаторов, у которых первичные и вторичные обмотки соединяются звездой или треугольником, либо один трехфазный трансформатор с общим магнитопроводом.
Трехфазные трансформаторы могут иметь различные схемы соединения первичных и вторичных обмоток. Все начала первичных обмоток трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток - малыми буквами: а, Ь, с.
Концы обмоток обозначаются соответственно: X, У, Z и х, у, z.
Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.
Наибольшее распространение имеют соединения обмоток по схеме "звезда" (Y) и "треугольник" (D ), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток "звездой" нулевая точка выводится, то такое соединение называют "звезда c нулем" (Yо).
На рис. 4.9.1 приведен трехфазный трансформатор при включении обмоток Y/Y.

4.10.ГРУППЫ СОЕДИНЕНИЯ ОБМОТОК

До сих пор мы считали, что при построении векторной диаграммы ЭДС Е 1 и Е 2 совпадают по фазе. Но это соответствует действительности лишь при условии намотки первичной и вторичной обмоток в одном направлении, или одноименной маркировки их выводов (рис. 4.10.1, а).


Если же в трансформаторе изменить направление намотки обмоток иди же переставить обозначение их выводов, то вектор ЭДС Е 2 окажется сдвинутым относительно вектора Е 1 на 180° (рис. 4.10.1, б).
Сдвиг фаз между ЭДС Е 1 и Е 2 принято выражать группой соединений. Так как этот сдвиг фаз может изменяться от 0 до 360°, а кратность сдвига обычно составляет 30°, то для обозначения групп соединения выбирается ряд чисел от 1 до 12, в котором каждая единица соответствует углу сдвига 30°.
В основу этого положено сравнение относительного положения векторов Е 1 и Е 2 с положением минутной и часовой стрелок часов. Вектор обмотки В.Н. считается минутной стрелкой, установленной на цифре 12, а вектор Н.Н. - часовой стрелкой. По положению часовой стрелки относительно минутной определяют положение вектора ЭДС обмотки Н.Н. относительно обмотки В.Н. Так, на рис. 4.10.1, а соединение имеет группу 12, а на рис. 4.10.1, б - группу 6.
Таким образом, в однофазном трансформаторе имеется только две группы -12 и 6. В 3-х фазном трансформаторе группу соединения определяют по углу сдвига фаз между линейными векторами ЭДС Е 1 и Е 2 .
ГОСТ ограничивает применение только двух групп: Y / Y - 12 и Y / - 11. В качестве примера рассмотрим схему Y / Y - 12 (рис. 4.10.2).

Векторная диаграмма показывает, что сдвиг между E 1 и Е 2 равен нулю или 360°, т.е. (360° / 30° - 12 группа).
Если же поменять начала и концы обмоток Н.Н., то будем иметь группу 6 (рис. 4.10.3).


4.11. ПАРАЛЛЕЛЬНАЯ РАБОТА ТРАНСФОРМАТОРОВ

При выборе трансформаторов для электроснабжения производственного предприятия часто возникает дилемма: либо установить один мощный трансформатор, либо применить их несколько, в сумме обеспечивающих требуемую мощность.
Второй вариант будет всегда предпочтительней, т.к. режим работы предприятия в течение суток неравномерный и потребляемая мощность будет различной. Например, в ночное время нагрузка будет минимальной, т.к. потребляемая мощность складывается лишь из охранного освещения и нескольких дежурных объектов. Днем, когда работают основные потребители электроэнергии, потребляемая мощность будет максимальной. Какой-то промежуточный режим будет в вечернее время суток. Короче говоря, в работе могут находиться один, два или сразу три трансформатора.
Параллельная работа нескольких трансформаторов связана с тем, что их вторичные обмотки питают общую нагрузку.
Однако не все трансформаторы способны работать параллельно.
Определим условия, при которых возможно включение трансформаторов на параллельную работу. Во-первых, это одинаковые первичные и вторичные напряжения на обмотках. Во-вторых, должны быть одинаковые схемы и группы соединения. Помимо этого, регламентируются напряжения короткого замыкания, указанные в паспорте трансформатора. И, конечно, порядок чередования фаз у параллельно работающих трансформаторов должен быть одинаковым. В качестве примера приведем схему параллельно включенных пяти сварочных трансформаторов, обеспечивающих работу 14 сварочных постов (рис. 4.11.1).

4.12. ТРАНСФОРМАТОРЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

4.12.1. ТРЕХОБМОТОЧНЫЙ ТРАНСФОРМАТОР

В трех обмоточном трансформаторе имеются три электрически несвязанные друг с другом обмотки, из которых одна является первичной, а две другие - вторичными (рис. 4.12.1).

Первичная обмотка трансформатора является намагничивающей и создает в магнитопроводе магнитный поток, который пронизывает две вторичные обмотки и наводит в них ЭДС Е 2 и Е 3 .
Пренебрегая током холостого хода, можно записать уравнение токов трех обмоточного трансформатора

т.е. первичный ток равен геометрической сумме приведенных вторичных токов. Целесообразность применения трехобмоточных трансформаторов объясняется еще и тем, что один трехобмоточный трансформатор фактически заменяет два двухобмоточных.
За номинальную мощность принимается мощность первичной обмотки. По такому же принципу устроены многообмоточные трансформаторы малой мощности, применяемые в радиоустройствах, связи и в автоматике.

4.12.2. АВТОТРАНСФОРМАТОР

В автотрансформаторе (рис. 4.12.2) часть витков в обмотке В.Н. используется в качестве обмотки Н.Н., т.е. в автотрансформаторе имеется всего лишь одна обмотка, часть которой (а Х) принадлежит одновременно сторонам В.Н. и Н.Н.

На участке аХ протекает ток i 12 = i 2 - i 1 , или переходя к действующим значениям, учитывая, что I 1 и I 2 находятся в противофазе, можно записат

Таким образом, величина тока в общей части обмоток равна разности токов I 1 и I 2 .
Если коэффициент трансформации близок к единице, то I 1 и I 2 мало отличаются друг от друга, разность между ними будет также небольшой. Это позволит выполнять часть обмотки аХ проводом меньшего поперечного сечения.
Мощность, передаваемая первичной обмоткой во вторичную цепь автотрансформатора, будет равна:

Учитывая, что , ее можно записать в виде:

Здесь U 2 I 1 = S Э, есть мощность, поступающая во вторичную цепь электрическим путем, U 2 I 12 = S м - мощность, поступающая во вторичную цепь посредством магнитного потока.
Следовательно, в автотрансформаторе посредством магнитного потока передается только часть мощности, что дает возможность уменьшить поперечное сечение магнитопровода. Магнитные потери при этом также уменьшаются.
При меньшем поперечном сечении магнитопровода уменьшается средняя длина витка обмотки, следовательно, вновь уменьшается расход обмоточной меди и снижаются электрические потери.
Таким образом, автотрансформатор имеет преимущества перед трансформаторами, заключающиеся в меньшем весе, меньших размерах более высоком К.П.Д., меньшей стоимости и. т.д.
Однако эти достоинства имеют значение лишь при коэффициенте трансформации k При большем коэффициенте трансформации имеют место следующие недостатки.
Это: большие токи короткого замыкания в случае понижающего автотрансформатора (при замыкании точек а и Х напряжение u 1 окажется на небольшой части витков автотрансформатора, обладающих малым сопротивлением короткого замыкания); электрическая связь стороны В.Н. со стороной Н.Н.; требующая усиления изоляции между обмотками и корпусом и возникающая опасность попадания В.Н. на сторону Н.Н.
Автотрансформаторы могут быть повышенными и пониженными, однофазными и трехфазными. Автотрансформаторы применяются в высоковольтных линиях электропередач для пуска асинхронных и синхронных двигателей в лабораторной практике и при испытаниях.
Регулировка напряжения осуществляется как переключателями, изменяющими вводимое число витков во вторичной цепи, так и посредством скользящего контакта, перемещающегося непосредственно по виткам обмотки.

4.12.3. ТРАНСФОРМАТОР ДЛЯ ДУГОВОЙ СВАРКИ

Сварочный трансформатор представляет собой однофазный трансформатор, понижающий напряжение сети до 60-65 В (рис. 4.12.3.1, а).
В рабочем режиме трансформатор находится близко к короткому замыканию. Чтобы величина тока не возрастала сверх допустимого значения, последовательно к нему включается реактивная катушка РК с раздвижным сердечником, в результате чего характеристика трансформатора становится круто падающей (рис. 4.12.3.1, б).

Изменяя зазор d , можно плавно менять сварочный ток. Максимальное значение тока будет при d мах. Для безопасного обслуживания вторичная обмотка сварочного трансформатора заземляется.

4.12.4. ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА И НАПРЯЖЕНИЯ

Эти трансформаторы применяются совместно с измерительными приборами для расширения их пределов измерения (рис. 4.12.4.1).
Измерительный трансформатор напряжения представляет собой понижающий трансформатор с таким отношением витков w 1 /w 2 , чтобы при U 1 = U сети; U 2 = 100 В.
Во вторичную цепь включаются вольтметры, частотомеры, обмотки напряжения ваттметров, счетчиков и фазометров. Так как электрическое сопротивление этих приборов велико (порядка 1000 0м), то трансформаторы напряжения работают в режиме, близком к холостому ходу. Такой режим связан с большими магнитными потерями, а это, в свою очередь, приводит к увеличению размеров магнитопровода и устройству специального масляного охлаждения.

Измерительные трансформаторы тока (рис. 4.12.4.1) применяются для включения в сеть амперметров, обмоток тока ваттметров, счетчиков и фазометров.
Первичная обмотка трансформатора тока выполняется из провода большого поперечного сечения и включается в цепь последовательно.
Вторичная обмотка выполняется всегда на ток I 2 = 5А. Рабочий режим трансформатора тока близок к короткому замыканию, поэтому размеры магнитопровода у него значительно меньше, чем у трансформатора напряжения.
Для определения напряжения или тока в цепи необходимо показания приборов умножить на коэффициент трансформации измерительных трансформаторов.
В целях безопасности нельзя оставлять вторичную обмотку трансформатора тока разомкнутой, если первичная включена в сеть. В этом режиме напряжение U 2 возрастает до нескольких тысяч вольт.
Разновидностью измерительного трансформатора тока являются токоизмерительные клещи с разъемным магнитопроводом, где роль первичной обмотки выполняет сам провод, по которому течет измеряемый ток.

4.12.5. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧИСЛА ФАЗ

Для питания различных выпрямителей или для электропечей возникает необходимость в увеличении числа фазных обмоток трансформатора. Так, трехфазная система сети с помощью специального трансформатора может быть преобразована в шестифазную или двенадцатифазную. На рис. 4.12.5.1, а приведена схема шестифазного преобразователя.

Первичная обмотка такого преобразователя соединена "звездой", а вторичная - "двойной звездой". Векторная диаграмма вторичной обмотки преобразователя представляет собой шестизвездную звезду (рис. 4.12.5.1, б).

4.12.6. СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

Для стабилизации напряжения в устройствах небольшой мощности (до 5 кВт) применяются электромагнитные стабилизаторы:
1) ферромагнитные насыщенного типа (без емкости), в которых используются явления, основанные на насыщении ферромагнитного сердечника;
2) феррорезонансные (с емкостью), работа которых основана на резонансе токов и напряжений.
Рассмотрим работу феррорезонансного стабилизатора. Он состоит из реактивной катушки 1, сердечник которой при заданном диапазоне напряжений U 1 работает в состоянии магнитного насыщения, конденсатора С и автотрансформатора 2 магнитопровод которого не насыщен (рис. 4. 12.6.1).
Обмотка автотрансформатора включена таким образом, чтобы напряжение на выходе стабилизатора U 2 было равно разности

U 2 = U 2 " - U 2 " ,

где U 2 " - напряжение на выходе автотрансформатора;
U 2 " - напряжение на выходах реактивной катушки.


Напряжение U 2 " благодаря явлению феррорезонанса имеет резко нелинейную зависимость от тока I 1 (кривая 1). Напряжение на выходе автотрансформатора U 2 " в виду насыщенного состояния его магнитопровода пропорционально току I 1 (кривая 2).
Если параметры автотрансформатора и реактивной катушки подобраны таким образом, что наклон кривой 1 к оси абсцисс в области магнитного насыщения равен наклону кривой 2, то разность U 2 " - U 2 "" = const.
В этом случае напряжение на выходе не зависит от тока I 1 (кривая 3) и, следовательно, от напряжения U 1 .

4.12.7. МАГНИТНЫЙ УСИЛИТЕЛЬ

Магнитный усилитель - это статический аппарат, применяемый в схемах автоматического регулирования.
Работа магнитного усилителя основана на нелинейности характеристики намагничивания магнитопровода (рис. 4.12.7.1).

На крайних стержнях магнитного усилителя находится рабочая обмотка, которая состоит из двух катушек соединенных последовательно. На среднем стержне размещается обмотка управления из большого количества витков. Если ток в нее не подается, а к рабочей обмотке подведено напряжение U 1 , то из за малого количества витков W ~ магнитопровод не насыщается и почти все напряжение сети падает на сопротивление рабочих обмоток Z Н. На потребителе в этом случае выделяется малая мощность.
Если теперь пропустим по обмотке управления ток I У, то даже при небольшом его значении (из-за большого W =), возникает насыщение магнитопровода. В результате сопротивление рабочей обмотки резко уменьшается, а величина тока в цепи - увеличивается.
Таким образом, посредством малых сигналов в обмотке управления можно управлять значительной величиной мощности в рабочей цепи магнитного усилителя.

4.12.8. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ

В школьной практике часто возникает необходимость создания источника переменного тока повышенной частоты.
С помощью трансформаторов легко построить удвоитель или утроитель частоты.
Утроитель частоты состоит из трех однофазных трансформаторов, работающих при сильно насыщенном сердечнике (рис. 4.12.8.1).
Первичные обмотки соединены "звездой", а вторичные - последовательно. Как известно, намагничивающий ток имеет сложную форму кривой и помимо основной гармонической составляющей имеет третью, изменяющуюся с частотой f 3 = 3f 1 .
При соединении первичной обмотки "звездой" токи основной гармоники уравно-вешиваются, и под действием третьей гармоники магнитный поток наводит во вторичной обмотке напряжение, изменяющееся с тройной частотой.


Векторное изображение электрических величин (тока, напряжения, ЭДС). Примечание комплексных чисел для расчета электрических цепей. Представление синусоидальных э.д.с., напряжений и токов комплексными числами

При изображении вращающихся векторов синусоидальных э.д.с, напряжения и тока на комплексной плоскости ось абсцисс плоскости декартовых координат совмещают с осью действительных или вещественных величин (ось + 1) комплексной плоскости. Тогда мгновенные значения синусоидальных величин получают на оси мнимых величин (ось+j) .

Как известно, каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в показательной, тригонометрической или алгебраической форме. Например, э.д.с. Emsm (cot + ц/с) изображенной на рисунке 9.1 вращающимся вектором, соответствует комплексное число.

Рисунок 9.1 - Изображение синусоидальной э.д.с. вращающимся вектором на комплексной плоскости

Um=Um+jUm, (9.1)

Em ef(щt+шe)= Em cos(щt+шe)+jEmsi n+(щt+шe)= е"+je (9.2)

Фазовый уголь a>t+ у/, определяют по проекциям вектора на оси координат +1

tg (щt+шe)= е/е" (9.3)

Мнимая составляющая комплексного числа вектора на комплексной плоскости определяет синусоидальное изменение э.д.с. и обозначается символом Im

e=Em sin(щt+шe)=Im Em е"(щt+шe). (9.4)

Комплексное число E j(щt+шe) удобно представить в виде произведения двух комплексных чисел

Em е"(щt+шe)= Em е" шe e щt = Em е(щt (9.5)

Первое комплексное число Em соответствующее положению вектора в начальный момент времени, называют комплексной амплитудой

Em = Em еtшe (9.6)

Второе комплексное число Eш является оператором поворота вектора на угол cat относительно начального положения вектора.

Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака j произведения комплекса амплитуды Ет и оператора вращения

e=Em sin(щt+шe)=Im Em еjщt. (9.7)

Переход от одной формы записи синусоидальных э.д.с, токов и напряжений к другой осуществляется весьма просто с помощью формулы

Эйлера еjщt - cos +/sin a.

Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме

Um =Um+ jUm (9.8)

то, чтобы записать ее в показательной форме, необходимо найти начальную фазу <р „, т.е. угол, который образует вектор Um с осью + 1.

В данном случае вектор Um расположен в первом квадранте комплексной плоскости, и его начальная фаза (рисунок 9.2) определяется соотношением

Tg шu=Um /Um (9.9)

Мгновенные значения напряжения

u=ImUm e щt =ImUme"(щt+шe)= Um sin(щt+шe), (9.10)

Рассмотрим другой пример, когда комплексная амплитуда тока задана комплексным числом

Im=-Im+jIm (9.11)

Вектор комплексной амплитуды тока /т расположен во втором квадранте комплексной плоскости (рисунок 9.3). Начальная фаза этого тока

Шt=180є-б (9.12)

Где tgшt=tg(180є-б)=- Im/ Im=tgб (9.13)

Если задано мгновенное значение тока в виде синусоиды / = Imsin(o)e + , то комплексную амплитуду записывают сначала показательной форме, а затем, по формуле Эйлера, переходят к алгебраической форме

Рисунок 9.2 - начальная вектора комплексной амплитуды напряжения, расположенного в первом квадранте комплексной плоскости.

Рисунок 9.3 - первая начальная фаза вектора комплексной амплитуды тока, расположенного во втором квадранте комплексной плоскости

Применение комплексных чисел позволяет от геометрического сложения или вычитания векторов на векторной диаграмме перейти к алгебраическому действию над комплексными числами этих векторов. Например, для определения комплексной амплитуды результирующего тока (см. рисунок 9.4) достаточно сложить два комплексных числа, соответствующих комплексным амплитудам токов ветвей

I3m= Im +I2m =I3mefш3 (9.16)

Для определения комплексной амплитуды результирующей э.д.с. (см. рисунок 9.4) достаточно определить разность комплексных чисел, соответствующих комплексным амплитудам э.д.с. Ет и Ет..

Изображение синусоидальных величин с помощью векторов

При расчете цепей переменного тока часто приходится производить операции сложения и вычитания токов и напряжений. Когда токи и напряжения заданы аналитически или временными диаграммами, эти операции оказываются весьма громоздкими. Существует метод построения векторных диаграмм, который позволяет значительно упростить действия над синусоидальными величинами. Покажем, что синусоидальная величина может быть изображена вращающимся вектором.

Пусть вектор 1т вращается с постоянной угловой частотой со против часовой стрелки. Начальное положение вектора /т, задано углом у/ (рисунок 9.4.). Проекция вектора 1т на ось у определяется выражением /„, sin (cot + ц/), которое соответствует

мгновенному значению переменного тока. Таким образом, временная диаграмма переменного тока является разверткой по времени вертикальной проекции вектора /т, вращающегося со скоростью со.

Изображение синусоидальных величин с помощью векторов дает возможность наглядно показать начальные фазы этих величин и сдвиг фаз между ними.


Рисунок 9.4 - Изображение синусоидального тока вращающимися векторами

На векторных диаграммах длины векторов соответствуют действующим значениям тока, напряжения и ЭДС, так как они пропорциональны амплитудам этих величин.

На рисунке 9.5 показаны векторы Ei и Е2 с начальными фазами ц/i и ц/2 сдвигом фаз

Рисунок 9.5 - Векторная диаграмма синусоидальных Э.Д.С.

Совокупность нескольких векторов, соответствующих нулевому моменту времени, называют векторной диаграммой. Необходимо иметь в виду, что на векторной диаграмме векторы изображают токи (напряжения) одинаковой частоты.

Из предыдущих статей о проведении возбуждения по сердцу очевидно, что любое изменение направления и скорости проведения электрических потенциалов в сердечной мышце (и в тканях, окружающих сердце) приводит к изменению картины электрокардиографической кривой, поэтому анализ электрокардиограммы, записанной в различных отведениях, имеет важное значение в диагностике почти всех нарушений деятельности сердца.

Чтобы понять, каким образом нарушения сердечной деятельности отражаются на электрокардиографической кривой, мы должны познакомиться с понятиями вектор и векторный анализ применительно к электрическим потенциалам сердца и окружающих тканей.

В предыдущих статьях мы не раз подчеркивали, что электрические токи распространяются в сердце в определенном направлении в каждый момент сердечного цикла. Вектор представляет собой стрелку, которая характеризует величину и направление разности электрических потенциалов. Стрелка всегда направлена от минуса к плюсу, т.е. в положительную сторону. Кроме того, принято изображать длину стрелки пропорционально величине разности потенциалов.

Результирующий вектор сердца в каждый данный момент. На рисунке выделена красным цветом и отмечена знаками «минус» деполяризация межжелудочковой перегородки и миокарда желудочков, расположенного под эндокардом в области верхушки сердца. В этот момент электрические токи, идущие от возбужденных внутренних структур желудочков к невозбужденным наружным, обозначены на схеме длинными красными стрелками. Красными стрелками показаны токи, идущие внутри сердечных камер непосредственно от электроотрицательных к электроположительным участкам миокарда.

В целом токи . идущие вниз от основания желудочков к верхушке сердца, оказываются более мощными, чем токи, идущие в обратном направлении. Следовательно, суммарный вектор, отражающий разность потенциалов в данный момент, направлен от основания к верхушке сердца. Его называют средним моментным вектором. На схеме средний моментный вектор обозначен длинной черной стрелкой, проходящей через центр желудочков в направлении от основания к верхушке сердца. Поскольку суммарные токи имеют большую величину, а разность потенциалов велика - изображен вектор большой длины.

Направление вектора обозначается в угловых градусах

Если вектор расположен строго горизонтально и указывает налево, его направление соответствует 0°. От этой нулевой точки по часовой стрелке и начинается шкала отсчета. Так, если вектор расположен перпендикулярно вниз, его направление соответствует +90°. Если вектор расположен горизонтально и указывает направо, его направление соответствует +180°. Если вектор расположен перпендикулярно вверх, его направление соответствует -90° (или +270°).

Усредненное направление вектора во время распространения волны деполяризации по миокарду желудочков называют средним QRS-вектором. В норме его направление равно примерно +59°, как показано на рисунке, где изображен вектор А, проходящий через центр окружности под углом +59°. Это значит, что большую часть времени распространения деполяризации верхушка сердца остается электроположительной по отношению к основанию желудочков.

Вектор сердца и его отражение на электрокардиограмме

ЭКГ отражает суммарные электрические токи, возникающие в многочисленных волокнах миокарда по время возбуждения. Так как в процессе побуждения суммарная электродвижущая сила сердца изменяет величину и направление, она является векторной величиной. Вектор сердца схематически изображается стрелкой, указывающей направление электродвижущей силы, длина стрелки соответствует величине этой силы.

Электрокардиографический вектор ориентирован в строну положительного полюса суммарного диполя - сердечной мышцы. Если возбуждение распространяется по направлению к положительному электроду, то на ЭКГ регистрируется положительный (направленный вверх) зубец, если возбуждение направлено от положительного электрода, то регистрируется отрицательный зубец.

Суммарный вектор электродвижущей силы сердца образуется путем суммирования его составных частей по правилу сложения векторов. Если направление суммарного вектора соответствует (параллельно) оси какого-либо отведения ЭКГ, то в данном отведении амплитуда отклонения (зубцов) кривой будет наибольшей. Если результирующий вектор расположен перпендикулярно оси отведения, то вольтаж зубцов будет минимальным.

Вектор сердца движется в грудной клетке в трехмерном пространстве: во фронтальной, горизонтальной и сагиттальной плоскостях. Изменения вектора в указанных плоскостях находят наибольшее отражение при записи ЭКГ в ортогональных отведениях.

По отведениям от конечностей можно проанализировать проекцию вектора сердца на фронтальную плоскость, а по грудным отведениям - на горизонтальную плоскость. Наибольшее практическое значение имеет направление вектора во фронтальной плоскости. Для этого необходимо проанализировать положение вектора сердца по отношению к осям отведений от конечностей в шестиосевой системе координат, когда оси отведений от конечностей проходят через центр треугольника Эйнтговена.

Отведения от конечностей не могут отразить положение вектора сердца в горизонтальной плоскости. Отклонения вектора в этой плоскости регистрируются в грудных отведениях.

Как указывалось выше, импульс возбуждения, зарождаясь в синусовом узле, распространяется на правое, а затем па левое предсердия. Предсердный вектор во фронтальной плоскости в норме ориентирован вниз и влево. Его направление совпадает с осью второго отведения, поэтому зубец Р в этом отведении имеет обычно наибольшую амплитуду.

Наиболее низким зубец Р будет в том отведении, ось которого перпендикулярна оси II отведения, т.е. в aVL. Зубец Р в отведении aVR отрицательный, так как оси отведений II и aVR имеют противоположную полярность. Предсердный вектор направлен почти перпендикулярно горизонтальной плоскости, поэтому амплитуда зубцов Р в грудных отведениях ниже, чем в отведениях от конечностей.

«Практическая электрокардиография», В.Л.Дощицин

Теория формирования электрокардиограмм — Руководство по клинической электрокардиографии детского возраста

Страница 2 из 84

Г л а в а 2 ТЕОРИИ ФОРМИРОВАНИЯ ЭЛЕКТРОКАРДИОГРАММ

ТЕОРИИ ВОЗБУЖДЕНИЯ КЛЕТКИ И ФОРМИРОВАНИЯ БИОПОТЕНЦИАЛА СЕРДЦА

Для понимания электрокардиографии необходимо познание теоретических основ возникновения биопотенциалов в живых тканях.

Электрическая реакция сердечной мышцы, сопровождающая ее сокращение, была известна давно , а первая теория биоэлектрических потенциалов принадлежит Е. Du Bois-Reymond (1848 — 1875). В основу выдвинутой теории автор положил наличие особых «электромоторных молекул» и указал на факт существования электроотрицательности в возбужденных и поврежденных участках ткани. В дальнейшее развитие теории Е. Du Bois-Reymond весомый вклад внес А. А. Соколовский (1858), который поставил вопрос о связи биоэлектрических явлений с обменом веществ. Наиболее приближённой к современным представлениям явилась теория В. Ю. Чаговца (1896). При исследовании влияния различных лекарственных веществ на электромоторные свойства нервов и мышц В. Ю. Чаговец применил теорию электролитической диссоциации Арренеуса для объяснения возникновения электропотенциалов в живых тканях. Таким образом, последнее явление сводилось к общим физико-химическим законам. Было доказано, что при определенных условиях (повреждение, возбуждение) положительные ионы передвигаются внутрь клетки, а отрицательные — на поверхность ее. При этом движении создается диффузионная разность потенциалов, направление и величина которой будут зависеть от подвижности ионов данного электролита и от его концентрации. Величина диффузионного потенциала выражается формулой Нернста:

где Е — разность потенциалов, и и у — подвижность ионов (положительного и отрицательного), п — валентность ионов, Р и Pi — осмотическое давление соприкасающихся растворов; R — газовая постоянная. Т — абсолютная температура, F — число Фарадея.

Почти одновременно родились теории возникновения биоэлектрических потенциалов, повлиявшие на дальнейшее развитие электрофизиологии сердца, авторами которых были W. Ostwald (1890), а затем W. Briinnings (1902) и J. Bernstein (1902). По «классической» мембранной теории, сформулированной J. Bernstein, предполагалось, что поверхность живой клетки покрыта полупроницаемой мембраной, пропускающей положительно заряженные ионы калия и не пропускающей связанные с ним анионы. Ионы калия, концентрация которых в протоплазме клетки велика, проходят через мембрану вдоль концентрационного градиента и таким образом заряжают наружную ее поверхность положительно. Внутренняя же поверхность мембраны оказывается заряженной отрицательно задержанными мембраной анионами.

Электрические явления, развивающиеся при повреждении ткани, J. Bernstein объяснял свободным выходом отрицательно заряженных анионов. При возбуждении ток действия возникает потому, что мембрана на определенном участке становится проницаемой для анионов на очень короткий срок (1—2 мс), и в течение этого срока в данной части ее образуется отрицательный потенциал.

Основное положение «классической» мембранной теории возникновения биопотенциалов: наличие «полупроницаемой» (избирательно проницаемой) мембраны на поверхности живых клеток и постоянная величина разности потенциалов по обе стороны мембраны в период покоя клетки — сохраняет свое научное значение и в настоящее время. Однако существенно изменились взгляды на суть ионных процессов.

В работах A. Hodgkin и сотр. было показано, что мембрана в процессе возбуждения становится проницаемой и для ионов натрия, тогда как покоящаяся мембрана пропускает только ионы калия. Благодаря использованию микроэлектродной техники было доказано, что поперечная (но обе стороны мембраны) разность потенциалов существует постоянно, а меняется лишь заряд поверхности мембраны. Перезарядка мембраны при этом происходит не одновременно по всей ее поверхности, а в одном месте благодаря избирательно повышенной проницаемости данного участка мембраны для ионов натрия. В связи с высокой внеклеточной концентрацией натрия последний начинает быстро диффундировать внутрь клетки, и внутренняя поверхность мембраны становится заряженной положительно. Если клетку окружить безнатриевой средой, то входящий эффект (входящий ток) отсутствует. Таким образом, входящий ток (быстрый) обусловлен движением ионов натрия внутрь клетки, а выходящий, более медленный, с возвратом ионов калия.

Какие же причины лежат в основе первоначального движения ионов натрия? В. Ю. Чаговец для объяснения данного явления, как написано выше, пользовался формулой Нернста. Но это оправдано лишь в условиях свободной диффузии и никак нельзя данной формулой объяснить движения ионов натрия против электрохимического градиента, происходящего после окончания возбуждения при восстановлении исходного химического состава клетки. Согласно представлениям Hodgkin, мембрана располагает транспортной системой, которая переносит ионы натрия из клетки в межклеточную среду против электрохимического градиента. Активный перенос ионов против последнего возможен при наличии достаточной энергии, которая высвобождается в процессе обмена веществ. Еще в 1936 г. крупнейший советский кардиолог Г. Ф. Ланг обратился к различным специалистам с призывом изучать химию миокарда, основным вопросом которой считал исследование источников энергии для непрерывной активности сердечной мышцы. Он же указал на электрокардиографию как на рациональный и единственно пригодный метод изучения биохимических процессов в сердце. Состоянием обмена веществ в настоящее время объясняются многие процессы. связанные с движением ионов через мембрану. Однако ответы на многие вопросы требуют уточнения.

Выражением биоэлектрических потенциалов клетки является трансмембранный потенциал. Он обусловлен различным ионным составом по обе стороны мембраны, а следовательно и различным зарядом. В период электрической диастолы (покоя) клетки вдоль внутренней поверхности мембраны расположены анионы — ионы с зарядом отрицательного знака (из-за диффузии положительных ионов калия из клетки). На наружной поверхности мембраны расположены катионы — ионы с зарядом положительного знака (состояние поляризации мембраны). Если при этом состоянии расположить электроды, соединенные через провода с гальванометром на поверхности клеточной мембраны, как это показано на рис. 5, а, то, естественно, отклонения стрелки гальванометра не произойдет. При расположении электродов с обеих сторон мембраны (рис. 5, б) стрелка гальванометра отклоняется, что указывает на наличие разности потенциалов — трансмембранного потенциала. Величина потенциала покоя равняется — 80 — 95 мВ и обусловлена концентрацией отрицательно заряженных ионов. Потенциал покоя стационарен при нормально протекающем внутриклеточном обмене веществ. Изменение величины потенциала при возникновении возбуждения носит название деполяризации мембраны и соответствует моменту начала диффузии ионов натрия внутрь клетки (нулевая фаза потенциала действия). Затем происходит реверсия, т. е. знак мембранного потенциала меняется на противоположный. Амплитуда потенциала действия (ПД) в зависимости от места положения электродов может быть зарегистрирована в виде моно- или двухфазной кривой. Первоначальный размах амплитуды потенциала действия при монофазном отведении существенно больше потенциала покоя и составляет приблизительно величину, равную 110—120 мВ, а длительность его колеблется в широких пределах — 50 —600 мс. Положительный заряд внутренней поверхности мембраны равен при этом приблизительно 30 мВ (рис. 8).

Как видно из приведенного рисунка, потенциал действия вначале характеризуется резким нарастанием значения («спайк») и переходит за нулевой уровень вверх, что получило название «overshoot» (перелет), или реверсия (перезарядка), мембраны — 0-фаза потенциала действия, затем в течение определенного времени (несколько следующих фаз потенциала действия) мембрана возвращается в состояние поляризации — процесс реполяризации. Следует отметить фазы ПД: деполяризации (фаза 0), начальной быстрой реполяризации (фаза 1), медленной реполяризации «плато» ПД (фаза 2), конечной быстрой реполяризации (фаза 3) и поляризации (фаза 4). Внизу на этом же рисунке схематично показано соответствие по времени фаз потенциала, действия с элементами электрокардиограммы.

Следует отметить, что потенциал действия различных отделов и структур сердца имеет морфологические отличия (степень крутизны фазы деполяризации, быстрой реполяризации и т. д.). Так, например, клетки синусового узла обладают меньшей скоростью деполяризации, а общая продолжительность их потенциала действия меньше, чем в других клетках сердца.

Несмотря на то, что биопотенциал сердечной клетки достаточно высок (— 90 мВ), электрический сигнал на поверхности тела человека имеет несравненно меньшую величину и поэтому для анализа его необходимо существенное усиление аппарата. Причиной резкого падения биопотенциала на поверхности тела является в основном анатомическая разнонаправленность мышечных волокон (этих элементарных генераторов электричества), что и создает условия для взаимного погашения (канцел- ляции) электрической активности составляющих элементов суммарной ЭДС сердца. Некоторые авторы утверждают, что в связи со сказанным теряется около 90 — 95% электрической активности сердца и, естественно, для анализа остается не более 5 — 10%. Оставшийся электросигнал в силу ряда причин, порождающих биоэлектрическую асимметрию (кардиосклероз, гипертрофия, нарушение проводимости и т. д.), может быть изменен, что и обусловливает появление патологической электрокардиографической кривой.

Рис. 8. Трансмембранный потенциал мышечного волокна сердца в течение сердечного цикла:

О — фаза деполяризации, . 1, 2, 3 (б, в, г) — начальная быстрая, медленная и конечная быстрая фазы реполяризации, 4 — фаза поляризации (а) — «overshoot».

Рис. 9. Схема дифференциальной кривой (по А. Ф. Самойлову и Weber).

Вверху — монофазная кривая возбуждения основания сердца или правого желудочка, внизу — монофазная кривая возбуждения верхушки сердца или левого желудочка, посередине — электрокардиограмма как результат алгебраического сложения двух монофазных

Рис. 10. Схема формирования кривой электрокардиограммы согласно теории диполя.

При определенном допущении из монофазной кривой трансмембранного потенциала можно построить электрокардиограмму. Поэтому одной из предложенных теорий происхождения электрокардиограмм является теория дифференциальной кривой, или теория интерференции [Самойлов А. Ф. 1908; Удельнов М. Г. 1955; Schiitz Е. et al. 1936]. Сторонники этой теории утверждают, что электрокардиограмма является алгебраической суммой двух противоположнонаправленных монофазных кривых, получаемых при раздельном отведении. С этой позиции происхождение зубцов и интервалов электрокардиограммы: Q, R, S, Т и S — Т — есть результат взаимодействия двух несколько асинхронных монофазных кривых различных областей сердца (например, правого и левого желудочков или верхушки и основания сердца). В пользу выдвинутой теории говорят такие факты, как совпадение времени длительности желудочкового комплекса электрокардиограммы и монофазной кривой, что колебание трансмембраниого потенциала отдельного мышечного волокна сердца носит монофазный характер. М. Г. Удельнов (1955) экспериментально доказал возможность формирования из двух монофазных кривых не только нормальной, но и патологической электрокардиограммы. Было также показано [Андреев С. В. и др. 1944], что можно получить раздельные монокардиограммы правого и левого желудочков и что они разнонаправленны. Аналогичные данные получил в эксперименте Ю. Д. Бородулин (1964). Большинство сторонников теории дифференциальной кривой придерживаются признания асинхронизма процессов деполяризации миокарда правого и левого желудочков и на основании этих данных предлагают схему формирования электрокардиограммы (рис. 9). Однако исследования последних десятилетий показали, что правый желудочек возбуждается не на 0,02 с, а лишь на 0,002 с раньше левого и что еще до него возбуждается межжелудочковая перегородка. Наибольшим признанием пользуется теория сердечного диполя . Под диполем понимают физическую систему, состоящую из двух равных по величине, но противоположных по знаку зарядов.

В 1927 г. W. Graib доказал, что если в солевой раствор поместить мышечную пластину, то при ее возбуждении образуется симметричное поле диполя. Это фактически и явилось предпосылкой к рассматриваемой теории. В дальнейшем в работах L. Wendt (1946) экспериментально было показано, в какой мере электрические процессы в сердце подчиняются закономерностям диполя.

Если поместить возбужденное мышечное волокно, этот элементарный диполь , в проводящую среду, то изменения разности потенциалов можно зарегистрировать не только в непосредственной близости волокна, но и вдали от него. Это связано с возникновением электрического поля, созданного элементарным диполем (мышечным волокном), являющимся источником ЭДС. Так как сердце (упрощенно) состоит из суммы мышечных волокон (элементарных диполей), то естественно, что электрическое поле сердца представлено суммой элементарных электрических полей. Фронт движения процесса возбуждения ориентирован в определенном направлении, а именно: положительным зарядом диполя в сторону невозбужденной ткани.

Согласно теории диполя формирование кривой электрокардиограммы происходит так, как это показано на рис. 10. При покое вычерчивается прямая горизонтальная (изоэлектрическая) линия, так как нет разности потенциалов между любыми 2 точками поверхности волокна. Затем, с началом периода деполяризации, регистрируется возрастающая волна, направленная вверх от изоэлектрической линии, и с исчезновением разности потенциалов волна опускается вновь до изоэлектрической линии. Так формируется зубец R. Затем регистрируется сегмент ST, что обусловлено определенной экспозицией полностью произошедшего процесса деполяризации и ранней реполяризацией. Следующий этап — формирование волны Т — связан с процессом реполяризации который в миокарде имеет противоположное процессу деполяризации направление.

В сердечной мышце направление зарядов диполя по отношению к оболочкам сердца стационарно и всегда к эндокардиальной поверхности обращены отрицательные, а к эпикардиальной — положительные знаки.

Рис. И. Электрическое поле сердца по A. Waller. Объяснение в тексте.

Рис. 12. Треугольник Einthoven. Объяснение в тексте.

Сердце, по мнению ряда авторов , без большой погрешности можно рассматривать как суммарный, единый диполь и, следовательно, электрокардиограмма, записанная с поверхности тела, не представляет собой результат регистрации ЭДС избранных участков сердца. Положительным полюсом суммарного диполя в средний момент возбуждения является верхушка, а отрицательным — основание сердца. При этом различают (рис. 11) ось диполя — линию, соединяющую отрицательный и положительный полюсы диполя; силовые и изопотенциальные линии. Последние проходят через точки с одинаковыми потенциалами. Вокруг каждого из полюсов (положительного и отрицательного) образуется поле заряда; между ними проходит линия нулевого потенциала. Такое пространственное дипольное описание электрических явлений в теле, вокруг сердца принадлежит A. Waller (1887— 1889 гг.). При этом он ось диполя назвал «электрической». В современном понимании, электрической осью обозначают лишь направление результирующей ЭДС сердца, в отличие от вектора, определяющего направление и величину ЭДС в тот или иной момент его деятельности.

Выдвинутая W. Einthoven концепция равностороннего треугольника (рис. 12) явилась базой утверждения теории сердечного диполя. Как видно из рис. 12, стороны треугольника представляют собой (схематично) оси электрокардиографических отведений, на которые проецируются положительные или отрицательные компоненты диполя, а углы его как бы соответствуют местам наложения электродов на трех конечностях: обеих руках и левой ноге. Электрическая ось сердца представлена жирной линией. Последняя имеет определенное направление и величину и называется результирующим, или сердечным, вектором. Проекция вектора на ось электрокардиографического отведения реализуется с помощью перпендикуляров, опущенных из нулевой точки и свободного конца его. При этом угол треугольника, направленный в сторону правой руки, имеет всегда отрицательное, а угол, соответствующий левой ноге, — положительное значение. Угол левой руки в случае образования оси первого стандартного отведения имеет положительное значение, а при образовании III отведения — отрицательное. Проекция вектора на сторону треугольника осуществляется таким образом, что отклонение от изолинии вверх всегда происходит в сторону угла с положительным значением. Проецируемая величина вектора ЭДС сердца при этом больше в случаях параллельного его (вектора) расположения по отношению к оси отведения. Соотношение в направлении вектора ЭДС сердца и оси I отведения во фронтальной плоскости определяется углом а, как это показано на рис. 12. Если угол а равен нулю, то ось I отведения и проецируемый на нее вектор строго параллельны. При значении угла а, равном +90°, проекция на ось I отведения определяется в виде точки, ибо направления вектора и оси взаимно перпендикулярны.

Вряд ли целесообразно противопоставлять рассмотренные выше теории формирования ЭКГ, доказывать правомерность одной и несостоятельность другой. Лучшее решение — путь рационального синтеза фактов, полученных как сторонниками теории диполя, так и сторонниками теории дифференции. Теория диполя больше удовлетворяет при объяснении процессов возбуждения в целом. Она, хотя и не универсальна, однако имеет больше сторонников из-за ее решающего значения для практической электрокардиографии, основанной на векторных принципах электрокардиографической диагностики. Поэтому темой одного из разделов данного руководства явится векторный метод в электрокардиографии.

ВЕКТОРНЫЙ АНАЛИЗ электрокардиограммы

Первое указание на пространственный характер электрических явлений в сердце принадлежит A. Waller, который пришел к выводу, что верхушка сердца несет на себе положительные заряды, а основание — отрицательные (см. рис. И). В 1913 г. W. Einthoven с сотр. показали направление и величину электропотенциалов с помощью десяти пунктов векторкардиограммы во фронтальной плоскости. Год спустя Н. Williams с помощью двух одновременно регистрирующих отведений объяснил векториальный характер возникновения в сердце электрических сил. В 1915 г. G. Fahr и A. Weber сделали попытку векторного изображения ЭДС сердца.

Более полное определение и понятие электрического вектора сердца введено в 1916 г. Т. Lewis, который изображал ЭДС сердца в виде последовательного ряда радиальных векторов, исходящих из одной изоэлектрической точки в разные стороны. В 1920 г. G. Fhar на основании векторкардиографического анализа доказал ошибочность существовавшей тогда ЭКГ-характеристики локализации блокад ветвей предсердно-желудочкового пучка (Гиса). В этом же году Н. Mann из трех стандартных отведений впервые синтезировал эллипсоидную замкнутую фигуру и назвал ее «монокардиограммой» (рис. 13), что явилось векторным воспроизведением последовательного изменения направления и величины ЭДС сердца.

В настоящее время все соглашаются, что в электрическом поле сердца в силу ряда биофизических явлений создается равнодействующая сила, имеющая определенные полярность, направление в пространстве и величину. Следовательно, всеми признается, что ЭДС сердца — величина векторная. Из этого следует, что электрокардиограмма’ есть проекция вектора ЭДС сердца на ось электрокардиографического отведения, представленная линейной графической формой и выражающая скалярные показатели величины зубцов и длительность фаз сердечного цикла. Таким образом, признавая векториальный характер ЭДС сердца, можно подвергнуть векторному анализу электрокардиограмму. Но прежде чем непосредственно перейти к анализу, представим некоторые положения из теории векторного исчисления.

Векторами называются отрезки, имеющие определенные величину (модуль) и направление. Векторы можно складывать, вычитать и умножать. В зависимости от пространственного положения векторы могут лежать на одной из координатных плоскостей или находиться под различным углом к последним.

Стрелка () — символ вектора. В нем различают нулевую точку (точку приложения), или начало вектора; величину (модуль) — расстояние от нулевой точки до острия стрелки, выражающуюся в сантиметрах, миллиметрах, милливольтах и т. д.; сторону действия — направление стрелки.

Рис. 15. Действие над векторами:

Рис. 13. Монокардиограмма по Н. Mann.

Рис. 14. Проекция вектора на ось отведения (проекция S на ось АБ).

а — сложение векторов по правилу многоугольника, суммарный (равнодействующий) вектор А равен сумме составляющих векторов (a j Н- а2 + а3 + а4 4- а5); б — сложение векторов по правилу параллелограмма; в — сложение векторов по правилу параллелепипеда.

Обычно величина (модуль) вектора обозначается одной или несколькими буквами, заключенными в вертикально расположенные линии: R или S или ST |. Сам же вектор обозначается буквой,-заключенной в фигурные скобки, со стрелкой

или линией вверху: , или. Пространственный вектор еще внизу за скобкой обозначается латинской буквой «s» (от слова «spatial» — что значит пространственный) — s.

Линия действия вектора — прямая, на которой он лежит. Сторона действия — порядок перехода от начала к концу вектора, лежащего на этой прямой. Вместе они дают представление о направлении действия вектора.

Равные вектора обозначаются R = S, неравные R ф S. Если R = S, то и

Проекция вектора на ось отведения или плоскость зависит от угла наклона к ним. Поэтому проекция вектора равна модулю его, умноженному на косинус угла наклона к проецируемой оси (рис. 14).

Сложение векторов можно осуществить по (рис. 15, а, б, в): а) правилу многоугольника;

Рис. 17. Последовательность векторов правого и левого желудочков.

Рис. 16. Векторкардиограмма. Петля QRS — векторная петля распространения возбуждения по желудочкам сердца.

б) правилу параллелограмма (сумма двух векторов равна диагонали параллелограмма, построенного на этих векторах);

в) правилу параллелепипеда.

Последнее правило применимо, если векторы лежат на разных плоскостях.

Моментные векторы одиночного мышечного волокна однонаправленны и расположены параллельно оси его. Однако сердце (миокард) имеет, как уже было описано, сложное анатомо-гистологическое строение, оно расположено пространственно, процесс возбуждения в нем имеет временной и пространственный характер распространения. Кроме того, следует учитывать влияние на сердце нервно-эндокринного аппарата, периодичность и изменчивость электрического поля. Последнее постоянно меняется как по величине, так и по направлению в связи с меняющимися соотношениями между возбужденными и невозбужденными участками миокарда. Изменения этих соотношений происходят в силу того, что в каждый момент в возбуждении и восстановлении участвует различное число разнонаправленных мышечных волокон и сумма их элементарных электрических полей все время меняется. Равные по величине, но противоположные по направлению векторы взаимно погашаются. Оставшиеся после канцелляции и спроецированные на плоскость результирующие моментные векторы можно сложить по правилу параллелограмма и получить результирующий моментный вектор сердца. Во время возбуждения миокарда каждый из моментных результирующих векторов направлен от эндокарда к эпикарду. За весь процесс деполяризации появляется последовательное множество разнонаправленных результирующих векторов, исходящих из одной точки дипольного центра. Если в порядке последовательности соединить стрелки результирующих моментных векторов, то образуется петля, которая, по предложению F. Wilson и R. Johnston (1938), стала называться векторкардиограммой (рис. 16). Последняя дает представление как о направлении, так и о последовательности возбуждения в миокарде. После спонтанной деполяризации клеток синусового узла волна возбуждения распространяется к атриовентрикулярному (А —В) соединению и прилегающим тканям предсердий. Затем через А — В соединение попадает в желудочки, где возбуждает межжелудочковую перегородку (рис. 17) и в течение 0,015 с достигает поверхности эндокарда левого и правого желудочков. В дальнейшем она распространяется трансмурально к эпикарду верхушки правого и левого желудочков.

Вектор QRS 0,01 с (межжелудочковая перегородка ориентирован слева направо вперед, несколько вверх или вниз. На 0,02 волны возбуждения захватывает нижнюю треть межжелудочковой перегородки и затем выходит на эпикардиальную поверхность правого желудочка в облает агеае trabecularis. В дальнейшем возбуждение распространяется радиально во все стороны по свободной стенке правого желудочка. В то же время начиная с 0,015 с возбуждаются внутренняя пластинка путей оттока левого желудочка и передневерхушечная область левого желудочка в наиболее тонкой части его.

Возбуждение областей правого и левого желудочков может быть представлено последовательно двумя парами векторов: вектором 0,015 с или париетальной ножки наджелудочкового гребня и нижней трети межжелудочковой перегородки, ориентированным вправо, вперед и вниз, с одной стороны, и вектором путей оттока левого желудочка, направленным влево и назад, — с другой. В результате их суммации можно наблюдать результирующий моментный вектор 0,02 с, ориентированный слева направо сзади наперед и вниз. Векторы, отражающие возбуждение свободной стенки правого и левого желудочков суммарно дают моментный вектор 0,03 с, направленный вперед влево и вниз. К концу 0,03 с возбуждается значительная часть свободной стенки правого и частично левого желудочков.

К 0,04 с возбуждения большая часть межжелудочковой перегородки и латеральной стенки правого желудочка полностью деполяризованы, исключая ее небольшую заднебазальную часть. Вектор 0,04 с, соответственно отражающий возбуждение правого и левого желудочков, больше других по величине и ориентирован влево, вниз, назад в сторону основной массы миокарда левого желудочка. На 0,05 — 0,06 с происходит возбуждение области основания правого желудочка, расположенной вблизи атриовентрикулярной бороздки и области конуса легочной артерии правого.желудочка. С этого же времени волна возбуждения охватывает полностью переднебоковую область (0,06 — 0,07 с) и заднюю поверхность основания сердца (0,07 — 0,08 с). Терминальные векторы ориентированы, как правило, назад вверх влево — в сторону наиболее толстой части левого желудочка.

Из приведенного рис. 17 видно, что появление вектора q обусловлено возбуждением межжелудочковой перегородки, а векторов R и S — возбуждением миокарда свободных стенок правого и левого желудочков. В зависимости от проекции результирующего моментного вектора на ту или другую ось отведения получаем различной амплитуды зубцы комплекса QRS. Таким образом, суть векторного анализа заключается в воссоздании пространственного направления и величины результирующей ЭДС сердца по структурным элементам электрокардиограммы в любой момент возбуждения. Практическая значимость сказанного очевидна.и поэтому в настоящее время для интерпретации электрокардиограмм используют векторный анализ. Для проведения последнего необходимо знать полярность осей отведений. Другими словами нужно знать и строго придерживаться правила, что любая волна (зубец), направленная вверх от изоэлектрической линии, всегда устремлена в сторону положительного полюса оси отведения и наоборот. О полярности треугольника Эйнтховена было сказано выше. Здесь покажем, как по трем стандартным отведениям можно найти результирующий вектор во фронтальной плоскости, его модуль и полярность.

Естественно, что в зависимости от пространственного соотношения результирующего вектора и осей отведений будет и различная проецируемая величина. Последняя будет наибольшей в случае параллельного расположения вектора по отношению к оси. По стандартным отведениям можно найти положение результирующего вектора во фронтальной плоскости (рис. 18). В практической электрокардиографии это положение используется для определения направления электрической оси (угол а). Аналогичным образом используются оси прекардиальных отведений для изучения векторов ЭДС в горизонтальной плоскости (рис. 19).

Для определения результирующего вектора в пространстве необходимо представить его в трех ортогональных плоскостях (фронтальной, горизонтальной, сагиттальной). Последнее возможно, если использовать прямоугольную систему кобрдинат и в соответствии с ней задать вектор, т. е. обозначить точку приложения, линию действия, сторону действия, модуль.

Рис. 18. Определение (упрощенное) положения результирующего вектора R по амплитуде зубцов R в трех стандартных отведениях (фронтальная плоскость) — проецируются вершины зубца R на оси соответствующих отведений.

Рис. 19. Построение векторной петли QRS в горизонтальной плоскости по комплексам QRS в прекардиальных отведениях. Обозначены шесть моментных векторов.

Рис. 20. Задание вектора Rs в пространственной системе координат по его проекциям (описание в тексте).

Возьмем точку М (рис. 20), расположенную в любом месте вектора, и опустим из нее перпендикуляр к плоскости ХОУ до пересечения с ней в точке N. Между прямыми ОМ и ON образуется угол 8. Этот угол будет4 изменяться от

У до +— (от -90 до +90°). Положение ON в плоскости ХОУ, которая является

проекцией ОМ, определяется утлом v|/, расположенным между осью X и ON. Угол J/ изменяется от 0 до 2я (360е). Как видно, эти два угла четко показывают положение вектора в пространстве, что можно записать следующим образом:

Угол 0 показывает ориентацию назад и вперед по отношению к сидящему человеку, а угол |/ указывает в правую или левую сторону системы координат, а также вниз или вверх. По существу, координатные плоскости делят пространство на восемь октантов (рис. 21). Поэтому для детализации положения вектора целесообразно представлять их в соответствии с указанными октантами. В зависимости от той или иной направленности координатных осей различают правые и левые системы координат.

Рис. 22. Трех- и шестиосевая система координат (осей ЭКГ-отведений) Бейли.

Рис. 23. Смещение результирующего вектора QRS вправо и вперед при гипертрофии миокарда правого желудочка ведет к увеличению зубца RVj (проекция направлена к + Vj) и углублению зубца Sy6.

В электрокардиографии в отличие от векторкардиографии используется косоугольная система координат (определение направления электрической оси сердца во фронтальной плоскости). Эта косоугольная система координат впервые была предложена Эйнгховеном в виде треугольника, построенного на трех осях стандартных электрокардиографических отведений и удовлетворяла уравнению Е2 = Е1 + Е3. Косоугольными являются также трехосевая и шестиосевая системы координат Бейли (рис. 22).

Векторный анализ позволяет выявить и уточнить характер и степень изменений в миокарде. Изменение пространственного положения результирующего вектора может быть обусловлено теми или другими причинами (гипертрофия, некроз и др.). Например, гипертрофия миокарда правого желудочка ведет к смещению результирующего вектора вправо и вперед (рис. 23), что электрокардиографически обозначается увеличением амплитуды RVl и SVe и др.

Таким образом, векторный анализ позволяет выявить истинную биоэлектрическую асимметрию, которая при соответствующих знаниях, клиническом опыте и сопоставлении с историей болезни приближает врача к конкретному диагнозу.

Среди многочисленных инструментальных методов исследования, которыми в совершенстве должен владеть современный практический врач, ведущее место справедливо принадлежит электрокардиографии. Этот метод исследования биоэлектрической активности сердца является сегодня незаменимым в диагностике нарушений ритма и проводимости, гипертрофий желудочков и предсердий, ишемической болезни сердца, инфаркта миокарда и других заболеваний сердца.

Что такое электрокардиография?

Электрокардиографией называется метод графической регистрации электрических явлений, возникающих в работающем сердце. Распространение возбуждения по сердцу сопровождается возникновением в окружающем его объемном проводнике (теле) электрического поля. Форма, амплитуда и знак элементов электрокардиограммы зависят от пространственно-временных характеристик возбуждения сердца (хронотопографии возбуждения), от геометрических характеристик и пассивных электрических свойств тела как объемного проводника, от свойств отведений электрокардиограммы как измерительной системы.

Каждое мышечное волокно представляет собой элементарную систему - диполь.
Из бесчисленных микродиполей одиночных волокон миокарда складывается суммарный диполь (ЭДС), который при распространении возбуждения в головной части имеет положительный заряд, в хвостовой - отрицательный.

При угасании возбуждения эти соотношения становятся противоположными. Так как возбуждение начинается с основания сердца, эта область является отрицательным полюсом, область верхушки - положительным.

Электродвижущая сила (ЭДС) имеет определенную величину и направление, т.е. является векторной величиной. Направление ЭДС принято называть электрической осью сердца, чаще всего она располагается параллельно анатомической оси сердца. Перпендикулярно к электрической оси проходит линия нулевого потенциала.

С помощью электрокардиографов биотоки сердца можно зарегистрировать в виде кривой - электрокардиограммы (ЭКГ).

Развитие электрокардиографии связано с именем голландского ученого Эйнтховена, который впервые зарегистрировал биотоки сердца в 1903 г.
с помощью струнного гальванометра и разработал ряд теоретических и практических основ электрокардиографии.

Основные функции сердца:

Сердце обладает рядом функций, определяющих особенности его работы:
1) функция автоматизма. Заключается в способности сердца вырабатывать электрические импульсы при отсутствии всяких внешних раздражений.

Функцией автоматизма обладают клетки синоатриального узла (СА-узла) и проводящей системы сердца: атриовентрикулярного соединения (АВ-соединения), проводящей системы предсердий и желудочков. Они получили название клеток водителей ритма - пейсмекеров.

Сократительный миокард лишен функции автоматизма.

СА-узел является центром автоматизма первого порядка. В норме это единственный водитель ритма, который подавляет автоматическую активность остальных (эктопических) водителей ритма сердца.

На функцию СА-узла и других водителей ритма большое влияние оказывают симпатическая и парасимпатическая нервная система: активация симпатической системы ведет к увеличению автоматизма клеток СА-узла и проводящей системы, а парасимпатической системы - к уменьшению.
СА-узел вырабатывает электрические импульсы с частотой 60-80 в минуту.

Центры автоматизма второго порядка - некоторые участки в предсердиях и АВ-соединение - зона перехода атриовентрикулярного узла в пучок Гиса. Частота продуцируемых электрических импульсов - 40-60 в минуту.

Центры автоматизма третьего порядка, обладающие самой низкой способностью к автоматизму (25-45 импульсов в минуту), - нижняя часть пучка Гиса, его ветви и волокна Пуркинье. Центры автоматизма второго и третьего порядка являются только потенциальными, или латентными, водителями ритма, они берут на себя функцию водителя ритма при поражениях СА-узла;

2) функция проводимости. Это способность к проведению возбуждения, возникшего в каком-либо участке сердца, к другим отделам сердечной мышцы. Волна возбуждения, генерированного в клетках СА-узла, распространяется по внутрипредсердным проводящим путям - сверху вниз и немного влево, в начале возбуждается правое, затем правое и левое предсердие, в конце - только левое предсердие.

В аv-узле происходит физиологическая задержка волны возбуждения, определяющая нормальную временную последовательность возбуждения предсердия и желудочков.
От аv-узла волна возбуждения передается на хорошо развитую внутрижелудочковую проводящую систему, состоящую из предсердно-желудочкового пучка (пучка Гиса), основных ветвей (ножек) пучка Гиса и волокон Пуркинье;

3) функция возбудимости и рефрактерность волокон миокарда.

Возбудимость - это способность сердца возбуждаться под влиянием импульсов. Функцией возбудимости обладают клетки как проводящей системы, так и сократительного миокарда.

Возникновение возбуждения в мышечном волокне является результатом изменения физико-химических свойств мембраны клетки и ионного состава внутриклеточной и внеклеточной жидкости. В рефрактерный период клетки миокарда не возбудимы на электрический стимул (систола). Во время диастолы полностью восстанавливается возбудимость миокардиального волокна, а рефрактерность его отсутствует;

4) функция сократимости.

Сократимость - это способность сердечной мышцы сокращаться в ответ на возбуждение. Этой функцией в основном обладает сократительный миокард. В результате последовательного сокращения различных отделов сердца и осуществляется основная, насосная, функция сердца.

Принцип работы электрокардиографа:

Колебания разности потенциалов, возникающие при возбуждении сердечной мышцы, воспринимается электродами, расположенными на теле обследуемого, и подается на вход электрокардиографа. Это чрезвычайно малое напряжение проходит через систему катодных ламп, благодаря чему его величина возрастает в 600-700 раз. Поскольку величина и направление ЭДС в течение сердечного цикла все время изменяются, стрелка гальванометра отражает колебания напряжения, а ее колебания в свою очередь регистрируются в виде кривой на движущейся ленте.

Запись колебаний гальванометра осуществляется на движущейся ленте непосредственно в момент регистрации. Движение ленты для регистрации ЭКГ может происходить с различной скоростью (от 25 до 100 мм/с), но чаще всего она равна 50 мм/с. Зная скорость движения ленты, можно рассчитать продолжительность элементов ЭКГ.

Так, если ЭКГ зарегистрирована при обычной скорости 50 мм/с, 1 мм кривой будет соответствовать 0,02 с.

Для удобства расчета в аппаратах с непосредственной записью ЭКГ регистрируется на бумаге с миллиметровыми делениями. Чувствительность гальванометра подбирается таким образом, чтобы напряжение в 1 мВ вызывало отклонение регистрирующего устройства на 1 см. Проверка чувствительности или степени усиления аппарата проводится перед регистрацией ЭКГ, она осуществляется с помощью стандартного напряжения в 1 мВ (контрольный милливольт), подача которого на гальванометр должна вызывать отклонение луча или пера на 1 см. Нормальная кривая милливольта напоминает букву “П”, высота ее вертикальных линий равна 1 см.

Электрокардиографические отведения:

Изменение разности потенциалов на поверхности тела, возникающие во время работы сердца, записываются с помощью различных систем отведений ЭКГ. Каждое отведение регистрирует разность потенциалов, существующих между двумя разными точками электрического поля сердца, в которых установлены электроды.

Таким образом, различные ЭКГ-отведения различаются между собой прежде всего участками тела, от которых отводятся потенциалы.

В настоящее время в клинической практике наиболее широко используют 12 отведений ЭКГ, запись которых является обязательной при каждом электрокардиографическом обследовании больного: 3 стандартных отведения, 3 усиленных однополюсных отведения от конечностей и 6 грудных отведений.

Стандартные отведения:

Стандартные двухполюсные отведения, предложенные в 1913 г. Эйнтховеном, фиксируют разность потенциалов между двумя точками электрического поля, удаленными от сердца и расположенными во фронтальной плоскости тела, на конечностях.

Для записи этих отведений электроды накладывают на правую руку (красная маркировка), на левую руку (желтая маркировка) и на левую ногу (зеленая маркировка). Эти электроды попарно подключают к электрокардиографу для регистрации каждого из трех стандартных отведений. Четвертый электрод устанавливают на правую ногу для подключения заземляющего провода (черная маркировка). Стандартные отведения от конечностей регистрируют при следующем попарном подключении электродов.

I отведение - правая рука (–) и левая рука (+).
II отведение - правая рука (–) и левая нога (+).
III отведение - левая нога (+) и левая рука (–).

Три стандартных отведения образуют равносторонний треугольник (треугольник Эйнтховена), вершинами которого являются правая рука, левая рука и левая нога с установленными там электродами. В центре треугольника расположен электрический центр сердца, одинаково удаленный от всех трех отведений.

Гипотетическая линия, соединяющая два электрода, участвующих в образовании ЭКГ-отведения, называется осью отведения.

Если ЭДС сердца в какой-либо момент сердечного цикла проецируется на положительную часть оси отведения, на ЭКГ записывается положительное отклонение (положительные зубцы R, T, P). Если ЭДС сердца проецируется на отрицательную часть оси отведения, на ЭКГ регистрируются отрицательные отклонения (зубцы Q, S, иногда отрицательные зубцы T или P).

Для облегчения анализа показаний ЭКГ, зарегистрированных в стандартных отведениях, принято несколько смещать оси этих отведений и проводить их через электрический центр сердца. Получается удобная для анализа триосевая система координат.

Усиленные однополюсные отведения от конечностей. Эти отведения были предложены Гольдбергером в 1942 г.

AVR - усиленное однополюсное отведение от правой руки.
AVL - усиленное однополюсное отведение от левой руки.
AVF - усиленное однополюсное отведение от левой ноги.

Шести осевая система координат:

Стандартные и усиленные однополюсные отведения от конечностей дают возможность зарегистрировать изменения ЭДС сердца во фронтальной плоскости, т.е. в плоскости, в которой расположен треугольник Эйнтховена.

Шестиосевая система координат (Бейли) получается при совмещении осей трех стандартных и трех усиленных отведений от конечностей, проведенных через электрический центр сердца. Благодаря ей можно достаточно точно определять величину и направление вектора ЭДС сердца во фронтальной плоскости.

Грудные отведения:

С целью более точной диагностики поражений миокарда регистрируется ЭКГ при расположении электрода на передней поверхности грудной клетки.

Отведение V1 - активный электрод установлен в IV межреберье по правому краю грудины.
Отведение V2 - активный электрод расположен в IV межреберье по левому краю грудины.
Отведение V3 - активный электрод находится между второй и четвертой позицией, примерно на уровне IV ребра по левой парастернальной линии.
Отведение V4 - активный электрод установлен в V межреберье по левой срединно-ключичной линии.
Отведение V5 - активный электрод расположен на том же горизонтальном уровне, что и V4, на левой передней подмышечной линии.
Отведение V6 - активный электрод находится на левой средней подмышечной линии на том же горизонтальном уровне, что и электроды отведений V4 и V5.

В отличие от стандартных и усиленных отведений от конечностей грудные отведения регистрируют изменения ЭДС сердца преимущественно в горизонтальной плоскости.

Электрокардиографические отклонения в каждом из 12 отведений отражают суммарную ЭДС всего сердца, т.е. являются результатом одновременного воздействия на данное отведение изменяющегося электрического потенциала в левом и правом отделах сердца, в передней и задней стенках желудочков, в верхушке и основании сердца.

Дополнительные отведения:

Диагностические возможности ЭКГ-исследования могут быть расширены при применении некоторых дополнительных отведений. Их использование особенно целесообразно в тех случаях, когда обычная программа регистрации 12 общепринятых отведений ЭКГ не позволяет достаточно надежно диагностировать ту или иную электрокардиографическую патологию или требует уточнения некоторых количественных параметров выявленных изменений.

Методика регистрации дополнительных отведений отличается локализацией активного электрода на поверхности грудной клетки.

Активный электрод устанавливают по задней подмышечной (V7), лопаточной (V8) и паравертебральной (V9) линиям на уровне горизонтали, на которой расположены электроды V4-V6. Эти отведения обычно используют для более точной диагностики очаговых изменений миокарда в заднебазальных отделах левого желудочка.

Отведения по Нэбу. Двухпомостные грудные отведения, предложенные в 1938 г. Нэбом, фиксируют разность потенциалов между двумя точками, расположенными на поверхности грудной клетки. Отведения по Нэбу записывают при положениях рукоятки переключателя на стандартных отведениях, электроды которых помещают на грудную клетку: электрод для правой руки - II межреберье у правого края грудины, электрод для левой руки - в точку, находящуюся на уровне верхушечного толчка по левой задней подмышечной линии, для левой ноги - на область верхушечного толчка.

Регистрируют три отведения: Д (dorsalis) в положении переключателя на I отведении, А (anterior) - на II отведении, Y (inferior) - на III отведении.

Отведения по Нэбу находят применение для диагностики очаговых изменений миокарда задней стенки (отведение Д), переднебоковой стенки (отведение А) и верхних отделов передней стенки (отведение Y).

Отведения Нэба часто применяют при проведении велоэргометрической и других функциональных электрокардиографических проб с физической нагрузкой.

Отведение по Лиану, или S5, применяют для уточнения диагноза сложных аритмий, его регистрируют при положении рукоятки переключателя на I отведении, электрод для правой руки располагают во II межреберье у правого края грудины, электрод для левой руки - у основания мечевидного отростка, справа или слева от него, в зависимости от того, при каком положении электрода лучше выявляется зубец Р.

Отведения по Слапаку-Партилле применяют для уточнения изменений в задней стенке при наличии глубокого зуба Q во II, III, AVF-отведениях.

Электроды помещают следующим образом: электрод от левой руки (желтый) располагают по левой задней аксиллярной линии на уровне верхушечного толчка (V межреберье), электрод от правой руки (красный) помещают поочередно во II межреберье в 4 точки: 1 - у левого края грудины; 2 - на середине расстояния между 1 и 3; 3 - на срединно-ключичной линии; 4 - по передней аксиллярной линии. ЭКГ регистрируют в переключении I отведения. Получают 4 отведения - S1, S2, S3, S4.

При нарастании зуба Q от S1 до S4 можно предположить наличие у больного рубцовых изменений в задней стенке или острого инфаркта миокарда (снимать ЭКГ в динамике).

Отведение по Клетэну. Уточняет изменения в нижней стенке левого желудочка. При этом электрод от правой руки помещают на рукоятку грудины, второй электрод остается на левой ноге. ЭКГ регистрируют в положении переключателя - II стандартное отведение.

Техника регистрации электрокардиограммы:

Для получения качественной записи ЭКГ необходимо строго придерживаться некоторых общих правил ее регистрации.

Условия проведения исследования. ЭКГ регистрируют в специальном помещении, удаленном от возможных источников электронных полей: электромоторов, физиотерапевтических и рентгеновских кабинетов, распределительных электрощитов.

Кушетка должна находиться на расстоянии не менее 1,5-2 м от проводов электросети. Целесообразно экранировать кушетку.

Исследование проводится после 10-15-минутного отдыха, не ранее чем через 2 ч после приема пищи. Больной должен быть раздет до пояса, голени также должны быть освобождены от одежды.

Запись ЭКГ проводится обычно в положении больного лежа на спине, что позволяет добиться максимального расслабления мышц.

Наложение электродов:

На внутреннюю поверхность голеней и предплечий в нижней их трети накладывают 4 электрода (пластинчатых), а на грудь устанавливают один или несколько (при многоканальной записи) грудных электродов, используя резиновую грушу-присоску.

Для улучшения качества записи следует обеспечить хороший контакт электродов с кожей.

Для этого необходимо:
1) обезжирить кожу спиртом в местах наложения электродов;
2) при значительной волосатости кожи смочить места наложения электродов мыльным раствором или побрить;
3) под электроды положить марлевые прокладки, смоченные 5-10%-ным раствором хлорида натрия, или покрыть электроды слоем специальной токопроводящей пасты или геля.

Подключение проводов к электродам:

К каждому электроду, установленному на конечностях или на грудной клетке, присоединяют провод, идущий от электрокардиографа и маркированный определенным цветом.

Маркировка входных проводов:
1) правая рука - красный цвет;
2) левая рука - желтый цвет;
3) левая нога - зеленый цвет;
4) правая нога (заземление пациента) - черный цвет;
5) грудной электрод - белый цвет.

При наличии 6-канального электрокардиографа, позволяющего одновременно зарегистрировать ЭКГ в 6 грудных отведениях, к электроду V1 подключают провод, имеющий красную окраску на наконечнике, к электроду V2 - желтую, V3 - зеленую, V4 - коричневую, V5 - черную, V6 - фиолетовую.

Запись электрокардиограммы:

В положении переключателя отведений “О” регистрируют калибровочный милливольт (1 mV = 10 мм).

При необходимости можно изменить усиление: уменьшить при слишком большой амплитуде зубцов ЭКГ (1 мВ = 5 мм) или увеличить при малой их амплитуде (1 мВ = 15 или 20 мм).

Запись ЭКГ осуществляют при спокойном дыхании. В каждом отведении записывают не менее 4 сердечных циклов PQRST. ЭКГ регистрируют, как правило, при скорости движения бумаги 50 мм/с. Меньшую скорость (25 мм/с) используют при необходимости более длительной записи ЭКГ, например для диагностики нарушений ритма.

На бумажной ленте записывают фамилию, отчество и имя пациента, его возраст, дату и время исследования. Лента с ЭКГ должна быть разрезана по отведениям и наклеена на бланк в той же последовательности, которая была рекомендована для съемки ЭКГ: I, II, III, AVR, AVL и AVF, V1-V6.

Функциональные пробы:

1) пробы с физической нагрузкой;
2) фармакологические пробы применяют для разграничения функциональных и органических изменений электрокардиограммы.

Проба с блокаторами b-адренорецепторов:

Проба с анаприлином (обзиданом) проводится с целью уточнения природы выявленных ранее электрокардиографических нарушений процесса реполяризации (сегмента ST и зубца Т) и проведения дифференциальной диагностики функциональных (нейроциркуляторная дистония, дисгормональная миокардиодистрофия) и органических (стенокардия, миокардит) и других заболеваний сердца.

Исследование проводят утром натощак. После регистрации исходной ЭКГ в 12 общепринятых отведениях больному дают внутрь 40-80 мг анаприлина (обзидана) и записывают повторно ЭКГ через 30, 60 и 90 мин после приема препарата.

При функциональных обратимых изменениях миокарда, сопровождающихся изменениями конечной части желудочкового комплекса (сегменты SТ и зубца Т), прием b-адреноблокаторов в большинстве случаев приводит к частичной или полной нормализации ЭКГ (положительная проба).

Электрокардиографические нарушения органической природы не претерпевают существенных изменений после приема препарата (отрицательная проба).

Под влиянием блокаторов b-адренорецепторов возможны небольшая брадикардия и увеличение продолжительности интервала РQ. Проведение пробы противопоказано больным с бронхиальной астмой и сердечной недостаточностью.

Проба с хлоридом калия:

Проба применяется с той же целью, что и проба с b-адреноблокаторами. После записи ЭКГ больному дают внутрь 6-8 г хлорида калия, разведенного в стакане воды. Повторно ЭКГ регистрируют через 30, 60 и 90 мин после приема калия. частичная или полная нормализация ранее измеренных сегмента S-Т и зубца Т после приема препарата (положительная проба) наступает, как правило, при функциональных изменениях миокарда. Отрицательная проба чаще свидетельствует об органических процессах в сердечной мышце. При проведении пробы могут иногда появиться тошнота и слабость.

Электрокардиографическая проба с нитроглицерином дает разнонаправленные изменения, которые весьма сложно интерпретировать. Все функциональные пробы проводят утром натощак или через 3 ч после завтрака. Окончательное решение о проведении пробы принимают в день ее проведения, после регистрации исходной ЭКГ.

Атропиновая проба:

После регистрации ЭКГ обследуемому вводят подкожно 1 мл 0,1%-ного раствора атропина и повторно исследуют ЭКГ через 5, 15 и 30 мин. Введение атропина блокирует действие блуждающего нерва и позволяет правильнее трактовать происхождение нарушений сердечного ритма и проводимости. Например, если на ЭКГ отмечалось удлинение интервала Р-Q, а после введения атропина продолжительность его нормализовалась, то имевшееся нарушение атриовентрикулярной проводимости было обусловлено повышением тонуса блуждающего нерва и не является следствием органического поражения миокарда.

Нормальная электрокардиограмма:

Любая ЭКГ состоит из нескольких зубцов, сегментов и интервалов, отражающих сложный процесс распространения волны возбуждения по сердцу.

В период диастолы сердца токи действия не возникают, и электрокардиограф регистрирует прямую линию, которая называется изоэлектрической. Появление токов действия сопровождается возникновением характерной кривой.

На ЭКГ здоровых людей различают следующие элементы:
1) положительные зубцы Р, R и Т, отрицательные Q и S; непостоянный положительный зубец U;
2) интервалы Р-Q, S-Т, Т-Р и R-R;
3) комплексы QRS и QRST.

Каждый из этих элементов отражает время и последовательность возбуждения различных участков миокарда.

В нормальных условиях сердечный цикл начинается возбуждением предсердий, что на ЭКГ отражается появлением зубца Р.

Восходящий отрезок Р обусловлен в основном возбуждением правого предсердия, нисходящий - левого предсердия. Величина этого зубца невелика, а в норме его амплитуда не превышает 1-2,5 мм; продолжительность составляет 0,08-1,0 с.

В норме в отведениях I, II, AVF, V2-V6 зубец Р всегда положительный.

В отведениях III, AVL, V1 зубец Р может быть положительным, двухфазным, а в отведениях III и AVL иногда даже отрицательным.

В отведении AVR зубец Р всегда отрицательный.

За зубцом Р следует отрезок прямой линии до зубца Q, а если он не выражен, то до зубца R. Это интервал P-Q (R). Он измеряется от начала зубца Р до начала зубца Q и соответствует времени от начала возбуждения предсердий до начала возбуждения желудочков. Нормальная продолжительность интервала Р-Q от 0,12 до 0,20 с и у здорового человека зависит в основном от частоты сердечных сокращений: чем выше частота сокращений сердца, тем короче интервал P-Q.

Желудочковый комплекс QRST отражает сложный процесс распространения (комплекс QAS) и угасания (сегмент RS-T и зубец Т) возбуждения по миокарду желудочков. Продолжительность QRS, измеряемая от начала зубца Q до конца зубца S, составляет 0,06-0,1 с.

Если амплитуда зубцов комплекса QRS достаточно велика и превышает 5 мм, их обозначают заглавными буквами латинского алфавита Q, R, S, если мала (менее 5 мм) - строчными буквами q, r, s.

Отрицательный зубец комплекса QRS, непосредственно предшествующий зубцу R, обозначают буквой Q (q), а отрицательный зубец, следующий сразу за зубцом R, - буквой S (s). Если на ЭКГ регистрируется только отрицательное отклонение, а зубец R отсутствует совсем, желудочковый комплекс обозначают QS.

Первый зубец комплекса - отрицательный зубец Q - соответствует возбуждению межжелудочковой перегородки.

В норме зубец Q может быть зарегистрирован во всех стандартных и усиленных отведениях от конечностей и в грудных отведениях V4-V6. Амплитуда нормального зубца Q во всех отведениях, кроме AVR, не превышает высоты зубца R, а его продолжительность - 0,03 с.

В отведении AVR у здорового человека может быть зафиксирован глубокий и широкий зубец Q или даже комплекс QS.

Зубец R соответствует почти полному охвату возбуждением обоих желудочков. Он является самым высоким зубцом желудочкового комплекса, его амплитуда колеблется в пределах 5-15 мм.

В норме зубец R может регистрироваться во всех стандартных и усиленных отведениях от конечностей. В отведении AVR зубец R нередко плохо выражен или отсутствует вообще. В грудных отведениях амплитуда зубца R постепенно увеличивается от V1 к V4, а затем несколько уменьшается в V5 и V6.

Зубец RV1, V2 отражает распространение возбуждения по межжелудочковой перегородке, а зубец RV4, V5, V6 - по мышце левого и правого желудочков. Интервал внутреннего отклонения в отведении V1 не превышает 0,03 с, а в отведении V6 - 0,05 с.

Зубец S записывается при полном охвате желудочков возбуждением.

Амплитуда зубца S колеблется в больших пределах, не превышая 20 мм. В грудных отведениях зубец S постепенно уменьшается от V1, V2 до V4, а в отведениях V5, V6 имеет малую амплитуду или отсутствует совсем.

Продолжительность желудочкового комплекса - 0,07-0,1 с.

В момент полной деполяризации миокарда разность потенциалов отсутствует, поэтому на ЭКГ записывается, как правило, прямая линия:
1) интервал S-T;
2) сегмент RS-T - отрезок от конца комплекса QRS до начала зубца Т;

Сегмент RS-T у здорового человека в отведениях от конечностей расположен на изолинии (+ 0,5 мм). В норме в грудных отведениях V1-V3 может наблюдаться небольшое смещение сегмента (не более 2 мм), а в отведениях V4, 5, 6 - вниз (не более 0,5 мм).

Зубец Т соответствует фазе восстановления (реполяризация) миокарда желудочков.

В норме зубец Т всегда положительный в отведениях I, II, AVF1, V2-V6, причем Т1 > ТIII, а ТV5 > TV1.

В отведениях III, AVL и V зубец Т может быть положительным, двухфазным или отрицательным.

В отведениях AVR зубец Т в норме всегда отрицательный.

Амплитуда зубца Т в отведениях от конечностей у здорового человека не превышает 5-6 мм, а в грудных отведениях - 15-17 мм. Продолжительность зубца колеблется от 0,16 до 0,24 с.

Интервал Q-T отражает время возбуждения и восстановления миокарда желудочков - электрическая система желудочков. Он изменяется от начала зубца Q (или R) до конца зубца Т. Его продолжительность зависит от частоты сердечного ритма: при учащении интервал Q-T укорачивается.

У женщин продолжительность интервала Q-T при одинаковой частоте сердечного ритма длиннее, чем у мужчин.

Анализ электрокардиограммы. Анализ следует начать с проверки правильности техники ее регистрации (наличие помех), амплитуды контрольного милливольта, оценок скорости движения бумаги.

Порядок расшифровки ЭКГ:

1. Анализ сердечного ритма и проводимости включает определение регулярности и числа сердечных сокращений, нахождения источника возбуждения, а также оценку функции проводимости.

Так как в норме водителем ритма является синусовый узел и возбуждение предсердий предшествует возбуждению желудочков, зубец Р должен располагаться перед желудочковым комплексом. Продолжительность интервалов R-R должна быть одинаковой (+10 % от средней продолжительности R-R).

Для подсчета числа сердечных сокращений нужно установить продолжительность одного сердечного цикла (интервал R-R) и вычислить, сколько таких циклов содержиться в 1 мин.

ЧСС = 60 / R-R.

При неправильном ритме находят среднюю продолжительность одного интервала R-R и после этого определяют частоту, как и при правильном ритме.

2. Определение положения электрической оси сердца проводится по форме желудочковых комплексов в стандартных отведениях.

Соотношение величины зубца R при нормальном положении электрической оси можно представить как R2 > R1 > R3.

Расположение электрической оси меняется при изменении положения сердца в грудной клетке. При низком стоянии диафрагмы у лиц астенического типа электрическая ось занимает более вертикальное положение, наиболее высокий зубец R будет регистрироваться в III отведении.

При высоком стоянии диафрагмы у гиперстеников электрическая ось располагается более горизонтально, поэтому наиболее высокий зубец R регистрируется в I отведении.

3. Изменение продолжительности и величины отдельных элементов ЭКГ. Измерения проводят в том стандартном отведении, где зубцы выражены наиболее хорошо (обычно во II).

Зубец R. Амплитуда его в норме не превышает 2,5 мм, длительность -0,1 с. При нормальном движении волны возбуждения по предсердиям зубцы Р в I, II, III отведениях положительные, а при направлении возбуждения снизу вверх - отрицательные.

Комплекс QRS. Для патологического зубца Q характерно увеличение его амплитуды более 1/4 зубца R в этом отведении, а продолжительность > 0,03 с.

Зубец R - измерить амплитуду, сопоставить с амплитудой зубца Q или S в том же отведении и с зубцом R в других отведениях; измерить продолжительность интервала внутреннего отклонения в отведениях V1 u V6.

Зубец S - измерить его амплитуду, сопоставить ее с амплитудой зубца R в том же отведении.

Сегмент RS-T. Анализируя его состояние, необходимо:
1) найти точку соединения j;
2) измерить ее отклонение от изолинии;
3) измерить величину смещения сегмента RS-T от изолинии вверх или вниз в точке, отстоящей от точки вправо на 0,05-0,08 с;
4) определить форму смещения - горизонтальное, косонисходящее, косовосходящее.

Зубец Т - определить направление (в большинстве отведений зубец Т положительный), оценить форму амплитуды.

Интервал Q-Т (электрическая систола желудочков). Расчет осуществляется по формуле Безетта (см. выше) или по таблицам.

Клиническое значение электрокардиографии трудно переоценить. Она оказывает большую помощь в выявлении нарушений сердечного ритма, в диагностике расстройств коронарного кровообращения, гипертофий различных отделов сердца, блокад. Но при всей ценности метода необходимо подчеркнуть, что оценивать ЭКГ следует только с учетом клинических и лабораторных данных, поскольку различные патологические процессы могут приводить к сходным ее изменениям, а отсутствие патологических изменений не всегда является нормой (даже при инфаркте миокарда больной может умереть с “нормальной” ЭКГ). Игнорирование клинических данных и переоценка метода электрокардиографии могут привести к серьезным диагностическим ошибкам. Достоинством метода является возможность его применения в любых условиях, безвредность для больного. Эти качества привели к широкому внедрению электрокардиографии в практическую медицину.

Похожие статьи